Skip to main content

Standard curve database

Search

ansip256k1

256-bit prime field Weierstrass curve.
Also known as: secp256k1
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
a0x0
b0x7
G(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
n0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
h0x1

Characteristics

  • OID:
    1.3.132.0.10

SAGE

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
K = GF(p)
a = K(0x0)
b = K(0x7)
E = EllipticCurve(K, (a, b))
G = E(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
E.set_order(0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 * 0x1)

PARI/GP

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
a = Mod(0x0, p)
b = Mod(0x7, p)
E = ellinit([a, b])
E[16][1] = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 * 0x1
G = [Mod(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, p), Mod(0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8, p)]

JSON

{
"name": "ansip256k1",
"desc": "",
"oid": "1.3.132.0.10",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f",
"bits": 256
},
"params": {
"a": {
"raw": "0x0"
},
"b": {
"raw": "0x7"
}
},
"generator": {
"x": {
"raw": "0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"
},
"y": {
"raw": "0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"
}
},
"order": "0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141",
"cofactor": "0x1",
"aliases": [
"secg/secp256k1"
]
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby