Skip to main content

Standard curve database

Search

prime239v1

239-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff
a0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc
b0x6b016c3bdcf18941d0d654921475ca71a9db2fb27d1d37796185c2942c0a
G(0x0ffa963cdca8816ccc33b8642bedf905c3d358573d3f27fbbd3b3cb9aaaf, 0x7debe8e4e90a5dae6e4054ca530ba04654b36818ce226b39fccb7b02f1ae)
n0x7fffffffffffffffffffffff7fffff9e5e9a9f5d9071fbd1522688909d0b
h0x1

Characteristics

  • OID:
    1.2.840.10045.3.1.4
  • Seed:
    E43BB460F0B80CC0C0B075798E948060F8321B7D
  • j-invariant:
    535250236995642411828071436390811255989556058215461384191615097928272770
  • Trace of Frobenius:
    506926255561332610517105435906892533
  • Discriminant:
    304850035712828017768890753913370930082366291391142991141919368057646026
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    441711766194596082395824375180154442403775170845813876137672712351403653
  • CM-discriminant:
    3533694129556768659166595001441235540750980133450508840652698006531906823
  • Conductor:
    1

SAGE

p = 0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff
K = GF(p)
a = K(0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc)
b = K(0x6b016c3bdcf18941d0d654921475ca71a9db2fb27d1d37796185c2942c0a)
E = EllipticCurve(K, (a, b))
G = E(0x0ffa963cdca8816ccc33b8642bedf905c3d358573d3f27fbbd3b3cb9aaaf, 0x7debe8e4e90a5dae6e4054ca530ba04654b36818ce226b39fccb7b02f1ae)
E.set_order(0x7fffffffffffffffffffffff7fffff9e5e9a9f5d9071fbd1522688909d0b * 0x1)

PARI/GP

p = 0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff
a = Mod(0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc, p)
b = Mod(0x6b016c3bdcf18941d0d654921475ca71a9db2fb27d1d37796185c2942c0a, p)
E = ellinit([a, b])
E[16][1] = 0x7fffffffffffffffffffffff7fffff9e5e9a9f5d9071fbd1522688909d0b * 0x1
G = [Mod(0x0ffa963cdca8816ccc33b8642bedf905c3d358573d3f27fbbd3b3cb9aaaf, p), Mod(0x7debe8e4e90a5dae6e4054ca530ba04654b36818ce226b39fccb7b02f1ae, p)]

JSON

{
"name": "prime239v1",
"desc": "",
"oid": "1.2.840.10045.3.1.4",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff",
"bits": 239
},
"params": {
"a": {
"raw": "0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc"
},
"b": {
"raw": "0x6b016c3bdcf18941d0d654921475ca71a9db2fb27d1d37796185c2942c0a"
}
},
"generator": {
"x": {
"raw": "0x0ffa963cdca8816ccc33b8642bedf905c3d358573d3f27fbbd3b3cb9aaaf"
},
"y": {
"raw": "0x7debe8e4e90a5dae6e4054ca530ba04654b36818ce226b39fccb7b02f1ae"
}
},
"order": "0x7fffffffffffffffffffffff7fffff9e5e9a9f5d9071fbd1522688909d0b",
"cofactor": "0x1",
"characteristics": {
"seed": "E43BB460F0B80CC0C0B075798E948060F8321B7D",
"j_invariant": "535250236995642411828071436390811255989556058215461384191615097928272770",
"anomalous": false,
"cm_disc": "3533694129556768659166595001441235540750980133450508840652698006531906823",
"conductor": "1",
"discriminant": "304850035712828017768890753913370930082366291391142991141919368057646026",
"embedding_degree": "441711766194596082395824375180154442403775170845813876137672712351403653",
"torsion_degrees": [
{
"full": 3,
"least": 3,
"r": 2
},
{
"full": 8,
"least": 8,
"r": 3
},
{
"full": 12,
"least": 12,
"r": 5
}
],
"supersingular": false,
"trace_of_frobenius": "506926255561332610517105435906892533"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby