Skip to main content

Standard curve database

Search

c2tnb239v3

239-bit binary field Weierstrass curve.
y2+xyx3+ax2+by^2 + xy \equiv x^3 + ax^2 + b

Parameters

NameValue
m239
f(x) x^239 + x^36 + 1
a0x01238774666a67766d6676f778e676b66999176666e687666d8766c66a9f
b0x6a941977ba9f6a435199acfc51067ed587f519c5ecb541b8e44111de1d40
G(0x70f6e9d04d289c4e89913ce3530bfde903977d42b146d539bf1bde4e9c92, 0x2e5a0eaf6e5e1305b9004dce5c0ed7fe59a35608f33837c816d80b79f461)
n0x0cccccccccccccccccccccccccccccac4912d2d9df903ef9888b8a0e4cff
h0x0a

Characteristics

  • OID:
    1.2.840.10045.3.0.13
  • Seed:
    9E076F4D696E676875615175E11E9FDD77F92041

SAGE

F.<x> = GF(2)[]
K = GF(2^239, name="x", modulus= x^239 + x^36 + 1)
E = EllipticCurve(K, (1, K.fetch_int(0x01238774666a67766d6676f778e676b66999176666e687666d8766c66a9f), 0, 0, K.fetch_int(0x6a941977ba9f6a435199acfc51067ed587f519c5ecb541b8e44111de1d40)))
E.set_order(0x0cccccccccccccccccccccccccccccac4912d2d9df903ef9888b8a0e4cff * 0x0a)
G = E(K.fetch_int(0x70f6e9d04d289c4e89913ce3530bfde903977d42b146d539bf1bde4e9c92), K.fetch_int(0x2e5a0eaf6e5e1305b9004dce5c0ed7fe59a35608f33837c816d80b79f461))


JSON

{
"name": "c2tnb239v3",
"desc": "",
"oid": "1.2.840.10045.3.0.13",
"form": "Weierstrass",
"field": {
"type": "Binary",
"bits": 239,
"degree": 239,
"poly": [
{
"coeff": "0x01",
"power": 239
},
{
"coeff": "0x01",
"power": 36
},
{
"coeff": "0x01",
"power": 0
}
],
"basis": "poly"
},
"params": {
"a": {
"raw": "0x01238774666a67766d6676f778e676b66999176666e687666d8766c66a9f"
},
"b": {
"raw": "0x6a941977ba9f6a435199acfc51067ed587f519c5ecb541b8e44111de1d40"
}
},
"generator": {
"x": {
"raw": "0x70f6e9d04d289c4e89913ce3530bfde903977d42b146d539bf1bde4e9c92"
},
"y": {
"raw": "0x2e5a0eaf6e5e1305b9004dce5c0ed7fe59a35608f33837c816d80b79f461"
}
},
"order": "0x0cccccccccccccccccccccccccccccac4912d2d9df903ef9888b8a0e4cff",
"cofactor": "0x0a",
"characteristics": {
"seed": "9E076F4D696E676875615175E11E9FDD77F92041"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby