Skip to main content

Standard curve database

Search

c2tnb239v1

239-bit binary field Weierstrass curve.
y2+xyx3+ax2+by^2 + xy \equiv x^3 + ax^2 + b

Parameters

NameValue
m239
f(x) x^239 + x^36 + 1
a0x32010857077c5431123a46b808906756f543423e8d27877578125778ac76
b0x790408f2eedaf392b012edefb3392f30f4327c0ca3f31fc383c422aa8c16
G(0x57927098fa932e7c0a96d3fd5b706ef7e5f5c156e16b7e7c86038552e91d, 0x61d8ee5077c33fecf6f1a16b268de469c3c7744ea9a971649fc7a9616305)
n0x2000000000000000000000000000000f4d42ffe1492a4993f1cad666e447
h0x4

Characteristics

  • OID:
    1.2.840.10045.3.0.11
  • Seed:
    D34B9A4D696E676875615175CA71B920BFEFB05D

SAGE

F.<x> = GF(2)[]
K = GF(2^239, name="x", modulus= x^239 + x^36 + 1)
E = EllipticCurve(K, (1, K.fetch_int(0x32010857077c5431123a46b808906756f543423e8d27877578125778ac76), 0, 0, K.fetch_int(0x790408f2eedaf392b012edefb3392f30f4327c0ca3f31fc383c422aa8c16)))
E.set_order(0x2000000000000000000000000000000f4d42ffe1492a4993f1cad666e447 * 0x4)
G = E(K.fetch_int(0x57927098fa932e7c0a96d3fd5b706ef7e5f5c156e16b7e7c86038552e91d), K.fetch_int(0x61d8ee5077c33fecf6f1a16b268de469c3c7744ea9a971649fc7a9616305))


JSON

{
"name": "c2tnb239v1",
"desc": "",
"oid": "1.2.840.10045.3.0.11",
"form": "Weierstrass",
"field": {
"type": "Binary",
"bits": 239,
"degree": 239,
"poly": [
{
"coeff": "0x01",
"power": 239
},
{
"coeff": "0x01",
"power": 36
},
{
"coeff": "0x01",
"power": 0
}
],
"basis": "poly"
},
"params": {
"a": {
"raw": "0x32010857077c5431123a46b808906756f543423e8d27877578125778ac76"
},
"b": {
"raw": "0x790408f2eedaf392b012edefb3392f30f4327c0ca3f31fc383c422aa8c16"
}
},
"generator": {
"x": {
"raw": "0x57927098fa932e7c0a96d3fd5b706ef7e5f5c156e16b7e7c86038552e91d"
},
"y": {
"raw": "0x61d8ee5077c33fecf6f1a16b268de469c3c7744ea9a971649fc7a9616305"
}
},
"order": "0x2000000000000000000000000000000f4d42ffe1492a4993f1cad666e447",
"cofactor": "0x4",
"characteristics": {
"seed": "D34B9A4D696E676875615175CA71B920BFEFB05D"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby