Skip to main content

Standard curve database

Search

c2pnb176w1

176-bit binary field Weierstrass curve.
y2+xyx3+ax2+by^2 + xy \equiv x^3 + ax^2 + b

Parameters

NameValue
m176
f(x) x^176 + x^43 + x^2 + x^1 + 1
a0xe4e6db2995065c407d9d39b8d0967b96704ba8e9c90b
b0x5dda470abe6414de8ec133ae28e9bbd7fcec0ae0fff2
G(0x8d16c2866798b600f9f08bb4a8e860f3298ce04a5798, 0x6fa4539c2dadddd6bab5167d61b436e1d92bb16a562c)
n0x010092537397eca4f6145799d62b0a19ce06fe26ad
h0xff6e

Characteristics

  • OID:
    1.2.840.10045.3.0.4

SAGE

F.<x> = GF(2)[]
K = GF(2^176, name="x", modulus= x^176 + x^43 + x^2 + x^1 + 1)
E = EllipticCurve(K, (1, K.fetch_int(0xe4e6db2995065c407d9d39b8d0967b96704ba8e9c90b), 0, 0, K.fetch_int(0x5dda470abe6414de8ec133ae28e9bbd7fcec0ae0fff2)))
E.set_order(0x010092537397eca4f6145799d62b0a19ce06fe26ad * 0xff6e)
G = E(K.fetch_int(0x8d16c2866798b600f9f08bb4a8e860f3298ce04a5798), K.fetch_int(0x6fa4539c2dadddd6bab5167d61b436e1d92bb16a562c))


JSON

{
"name": "c2pnb176w1",
"desc": "",
"oid": "1.2.840.10045.3.0.4",
"form": "Weierstrass",
"field": {
"type": "Binary",
"bits": 176,
"degree": 176,
"poly": [
{
"coeff": "0x01",
"power": 176
},
{
"coeff": "0x01",
"power": 43
},
{
"coeff": "0x01",
"power": 2
},
{
"coeff": "0x01",
"power": 1
},
{
"coeff": "0x01",
"power": 0
}
],
"basis": "poly"
},
"params": {
"a": {
"raw": "0xe4e6db2995065c407d9d39b8d0967b96704ba8e9c90b"
},
"b": {
"raw": "0x5dda470abe6414de8ec133ae28e9bbd7fcec0ae0fff2"
}
},
"generator": {
"x": {
"raw": "0x8d16c2866798b600f9f08bb4a8e860f3298ce04a5798"
},
"y": {
"raw": "0x6fa4539c2dadddd6bab5167d61b436e1d92bb16a562c"
}
},
"order": "0x010092537397eca4f6145799d62b0a19ce06fe26ad",
"cofactor": "0xff6e"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby