Skip to main content

Standard curve database

Search

ssc-256

256-bit prime field Weierstrass curve.

A prime order curve from MIRACL: https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/miracl-standard-curves.md. Has no generator specified.


y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c0b
a0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c08
b0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c583ce2d3695a9e13641146434e1
n0xc90fdaa22168c234c4c6628b80dc1cd0fbec42e940b37a88d9caeca198a64437
h0x01


SAGE

p = 0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c0b
K = GF(p)
a = K(0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c08)
b = K(0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c583ce2d3695a9e13641146434e1)
E = EllipticCurve(K, (a, b))
# No generator defined
E.set_order(0xc90fdaa22168c234c4c6628b80dc1cd0fbec42e940b37a88d9caeca198a64437 * 0x01)

PARI/GP

p = 0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c0b
a = Mod(0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c08, p)
b = Mod(0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c583ce2d3695a9e13641146434e1, p)
E = ellinit([a, b])
E[16][1] = 0xc90fdaa22168c234c4c6628b80dc1cd0fbec42e940b37a88d9caeca198a64437 * 0x01
\\ No generator defined

JSON

{
"name": "ssc-256",
"desc": "A prime order curve from MIRACL: https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/miracl-standard-curves.md. Has no generator specified.",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c0b",
"bits": 256
},
"params": {
"a": {
"raw": "0xc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139c08"
},
"b": {
"raw": "0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c583ce2d3695a9e13641146434e1"
}
},
"order": "0xc90fdaa22168c234c4c6628b80dc1cd0fbec42e940b37a88d9caeca198a64437",
"cofactor": "0x01"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby