Skip to main content

Standard curve database

Search

ssc-160

160-bit prime field Weierstrass curve.

A prime order curve from MIRACL: https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/miracl-standard-curves.md. Has no generator specified.


y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xc90fdaa22168c234c4c6628b80dc1cd129024e1f
a0xc90fdaa22168c234c4c6628b80dc1cd129024e1c
b0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c841
n0xc90fdaa22168c234c4c5d89f4f2dd72349ee61f7
h0x01


SAGE

p = 0xc90fdaa22168c234c4c6628b80dc1cd129024e1f
K = GF(p)
a = K(0xc90fdaa22168c234c4c6628b80dc1cd129024e1c)
b = K(0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c841)
E = EllipticCurve(K, (a, b))
# No generator defined
E.set_order(0xc90fdaa22168c234c4c5d89f4f2dd72349ee61f7 * 0x01)

PARI/GP

p = 0xc90fdaa22168c234c4c6628b80dc1cd129024e1f
a = Mod(0xc90fdaa22168c234c4c6628b80dc1cd129024e1c, p)
b = Mod(0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c841, p)
E = ellinit([a, b])
E[16][1] = 0xc90fdaa22168c234c4c5d89f4f2dd72349ee61f7 * 0x01
\\ No generator defined

JSON

{
"name": "ssc-160",
"desc": "A prime order curve from MIRACL: https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/miracl-standard-curves.md. Has no generator specified.",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xc90fdaa22168c234c4c6628b80dc1cd129024e1f",
"bits": 160
},
"params": {
"a": {
"raw": "0xc90fdaa22168c234c4c6628b80dc1cd129024e1c"
},
"b": {
"raw": "0xadf85458a2bb4a9aafdc5620273d3cf1d8b9c841"
}
},
"order": "0xc90fdaa22168c234c4c5d89f4f2dd72349ee61f7",
"cofactor": "0x01"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby