Skip to main content

Standard curve database

Search

MDC201601

256-bit prime field Edwards curve.

The Million Dollar Curve


x2+y2c2(1+dx2y2)x^2 + y^2 \equiv c^2 (1 + dx^2y^2)

Parameters

NameValue
p0xf13b68b9d456afb4532f92fdd7a5fd4f086a9037ef07af9ec13710405779ec13
c0x01
d0x571304521965b68a7cdfbfccfb0cb9625f1270f63f21f041ee9309250300cf89
G(0xb681886a7f903b83d85b421e03cbcf6350d72abb8d2713e2232c25bfee68363b, 0xca6734e1b59c0b0359814dcf6563da421da8bc3d81a93a3a7e73c355bd2864b5)
n0x3c4eda2e7515abed14cbe4bf75e97f534fb38975faf974bb588552f421b0f7fb
h0x04


SAGE

p = 0xf13b68b9d456afb4532f92fdd7a5fd4f086a9037ef07af9ec13710405779ec13
K = GF(p)
d = K(0x571304521965b68a7cdfbfccfb0cb9625f1270f63f21f041ee9309250300cf89)
E = EllipticCurve(K, (0, K(2 * (1 + d)/(1 - d)^2), 0, K(1/(1 - d)^2), 0))
E.set_order(0x3c4eda2e7515abed14cbe4bf75e97f534fb38975faf974bb588552f421b0f7fb * 0x04)
# This curve is a Weierstrass curve (SAGE does not support Edwards curves) birationally equivalent to the intended curve.
# You can use the to_weierstrass and to_edwards functions to convert the points.


JSON

{
"name": "MDC201601",
"desc": "The Million Dollar Curve",
"form": "Edwards",
"field": {
"type": "Prime",
"p": "0xf13b68b9d456afb4532f92fdd7a5fd4f086a9037ef07af9ec13710405779ec13",
"bits": 256
},
"params": {
"c": {
"raw": "0x01"
},
"d": {
"raw": "0x571304521965b68a7cdfbfccfb0cb9625f1270f63f21f041ee9309250300cf89"
}
},
"generator": {
"x": {
"raw": "0xb681886a7f903b83d85b421e03cbcf6350d72abb8d2713e2232c25bfee68363b"
},
"y": {
"raw": "0xca6734e1b59c0b0359814dcf6563da421da8bc3d81a93a3a7e73c355bd2864b5"
}
},
"order": "0x3c4eda2e7515abed14cbe4bf75e97f534fb38975faf974bb588552f421b0f7fb",
"cofactor": "0x04"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby