Fp254BNa
254-bit prime field Weierstrass curve.Curve used in: https://eprint.iacr.org/2010/354.pdf
Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
126611883464401272108868536818127077377 - Discriminant:
16030569034403128277756688287498649515636838101184337499778392980116222236113 - Anomalous:
false - Supersingular:
false - Embedding degree:
12 - CM-discriminant:
284987893944944502715674458444420435832981068983435327675576459482874497379 - Conductor:
15
SAGE
p = 0x2370fb049d410fbe4e761a9886e502417d023f40180000017e80600000000001K = GF(p)a = K(0x00)b = K(0x05)E = EllipticCurve(K, (a, b))G = E(0x01, 0xd45589b158faaf6ab0e4ad38d998e9982e7ff63964ee1460342a592677cccb0)E.set_order(0x2370fb049d410fbe4e761a9886e502411dc1af70120000017e80600000000001 * 0x01)
PARI/GP
p = 0x2370fb049d410fbe4e761a9886e502417d023f40180000017e80600000000001a = Mod(0x00, p)b = Mod(0x05, p)E = ellinit([a, b])E[16][1] = 0x2370fb049d410fbe4e761a9886e502411dc1af70120000017e80600000000001 * 0x01G = [Mod(0x01, p), Mod(0xd45589b158faaf6ab0e4ad38d998e9982e7ff63964ee1460342a592677cccb0, p)]
JSON
{"name": "Fp254BNa","desc": "Curve used in: https://eprint.iacr.org/2010/354.pdf","form": "Weierstrass","field": {"type": "Prime","p": "0x2370fb049d410fbe4e761a9886e502417d023f40180000017e80600000000001","bits": 254},"params": {"a": {"raw": "0x00"},"b": {"raw": "0x05"}},"generator": {"x": {"raw": "0x01"},"y": {"raw": "0xd45589b158faaf6ab0e4ad38d998e9982e7ff63964ee1460342a592677cccb0"}},"order": "0x2370fb049d410fbe4e761a9886e502411dc1af70120000017e80600000000001","cofactor": "0x01","characteristics": {"j_invariant": "0","anomalous": false,"cm_disc": "284987893944944502715674458444420435832981068983435327675576459482874497379","conductor": "15","discriminant": "16030569034403128277756688287498649515636838101184337499778392980116222236113","embedding_degree": "12","torsion_degrees": [{"full": 3,"least": 3,"r": 2},{"full": 6,"least": 2,"r": 3},{"full": 24,"least": 24,"r": 5},{"full": 6,"least": 6,"r": 7}],"supersingular": false,"trace_of_frobenius": "126611883464401272108868536818127077377"}}