Skip to main content

Standard curve database

Search

Ed448-Goldilocks

448-bit prime field TwistedEdwards curve.

Curve from https://eprint.iacr.org/2015/625.pdf


ax2+y21+dx2y2ax^2 + y^2 \equiv 1 + dx^2y^2

Parameters

NameValue
p0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff
a0x01
d0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756
G(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa955555555555555555555555555555555555555555555555555555555, 0xae05e9634ad7048db359d6205086c2b0036ed7a035884dd7b7e36d728ad8c4b80d6565833a2a3098bbbcb2bed1cda06bdaeafbcdea9386ed)
n0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3
h0x04


SAGE

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff
K = GF(p)
a = K(0x01)
d = K(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756)
E = EllipticCurve(K, (K(-1/48) * (a^2 + 14*a*d + d^2),K(1/864) * (a + d) * (-a^2 + 34*a*d - d^2)))
def to_weierstrass(a, d, x, y):
return ((5*a + a*y - 5*d*y - d)/(12 - 12*y), (a + a*y - d*y -d)/(4*x - 4*x*y))
def to_twistededwards(a, d, u, v):
y = (5*a - 12*u - d)/(-12*u - a + 5*d)
x = (a + a*y - d*y -d)/(4*v - 4*v*y)
return (x, y)
G = E(*to_weierstrass(a, d, K(0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa955555555555555555555555555555555555555555555555555555555), K(0xae05e9634ad7048db359d6205086c2b0036ed7a035884dd7b7e36d728ad8c4b80d6565833a2a3098bbbcb2bed1cda06bdaeafbcdea9386ed)))
E.set_order(0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3 * 0x04)
# This curve is a Weierstrass curve (SAGE does not support TwistedEdwards curves) birationally equivalent to the intended curve.
# You can use the to_weierstrass and to_twistededwards functions to convert the points.
SAGE


JSON

{
"name": "Ed448-Goldilocks",
"desc": "Curve from https://eprint.iacr.org/2015/625.pdf",
"form": "TwistedEdwards",
"field": {
"type": "Prime",
"p": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
"bits": 448
},
"params": {
"a": {
"raw": "0x01"
},
"d": {
"raw": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756"
}
},
"generator": {
"x": {
"raw": "0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa955555555555555555555555555555555555555555555555555555555"
},
"y": {
"raw": "0xae05e9634ad7048db359d6205086c2b0036ed7a035884dd7b7e36d728ad8c4b80d6565833a2a3098bbbcb2bed1cda06bdaeafbcdea9386ed"
}
},
"order": "0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3",
"cofactor": "0x04"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby