Skip to main content

Standard curve database

Search

E-382

382-bit prime field Edwards curve.

Curve from https://eprint.iacr.org/2013/647.pdf


x2+y2c2(1+dx2y2)x^2 + y^2 \equiv c^2 (1 + dx^2y^2)

Parameters

NameValue
p0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff97
c0x01
d0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef8e1
G(0x196f8dd0eab20391e5f05be96e8d20ae68f840032b0b64352923bab85364841193517dbce8105398ebc0cc9470f79603, 0x11)
n0xfffffffffffffffffffffffffffffffffffffffffffffffd5fb21f21e95eee17c5e69281b102d2773e27e13fd3c9719
h0x04


SAGE

p = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff97
K = GF(p)
d = K(0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef8e1)
E = EllipticCurve(K, (0, K(2 * (1 + d)/(1 - d)^2), 0, K(1/(1 - d)^2), 0))
E.set_order(0xfffffffffffffffffffffffffffffffffffffffffffffffd5fb21f21e95eee17c5e69281b102d2773e27e13fd3c9719 * 0x04)
# This curve is a Weierstrass curve (SAGE does not support Edwards curves) birationally equivalent to the intended curve.
# You can use the to_weierstrass and to_edwards functions to convert the points.


JSON

{
"name": "E-382",
"desc": "Curve from https://eprint.iacr.org/2013/647.pdf",
"form": "Edwards",
"field": {
"type": "Prime",
"p": "0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff97",
"bits": 382
},
"params": {
"c": {
"raw": "0x01"
},
"d": {
"raw": "0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef8e1"
}
},
"generator": {
"x": {
"raw": "0x196f8dd0eab20391e5f05be96e8d20ae68f840032b0b64352923bab85364841193517dbce8105398ebc0cc9470f79603"
},
"y": {
"raw": "0x11"
}
},
"order": "0xfffffffffffffffffffffffffffffffffffffffffffffffd5fb21f21e95eee17c5e69281b102d2773e27e13fd3c9719",
"cofactor": "0x04"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby