P-521
521-bit prime field Weierstrass curve.Also known as: secp521r1ansip521r1
Parameters
Characteristics
- OID:
1.3.132.0.35 - Seed:
D09E8800291CB85396CC6717393284AAA0DA64BA - j-invariant:
3619090631887053412807272747807643016060282478111249168973675223587770705025281286979867546071268566958111997954788345609183745222693618155278831649044785613 - Trace of Frobenius:
657877501894328237357444332315020117536923257219387276263472201219398408051703 - Discriminant:
2687853087729004331535582886185403114835754464152651523509230634031161977750238608042000458607319784141115468556368066113806987449553072575343372028907331922
SAGE
p = 0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffK = GF(p)a = K(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc)b = K(0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00)E = EllipticCurve(K, (a, b))G = E(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66, 0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650)E.set_order(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409 * 0x1)
PARI/GP
p = 0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa = Mod(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc, p)b = Mod(0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00, p)E = ellinit([a, b])E[16][1] = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409 * 0x1G = [Mod(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66, p), Mod(0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650, p)]
JSON
{"name": "P-521","desc": "","oid": "1.3.132.0.35","form": "Weierstrass","field": {"type": "Prime","p": "0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff","bits": 521},"params": {"a": {"raw": "0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc"},"b": {"raw": "0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00"}},"generator": {"x": {"raw": "0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66"},"y": {"raw": "0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650"}},"order": "0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409","cofactor": "0x1","aliases": ["secg/secp521r1","x963/ansip521r1"],"characteristics": {"seed": "D09E8800291CB85396CC6717393284AAA0DA64BA","j_invariant": "3619090631887053412807272747807643016060282478111249168973675223587770705025281286979867546071268566958111997954788345609183745222693618155278831649044785613","discriminant": "2687853087729004331535582886185403114835754464152651523509230634031161977750238608042000458607319784141115468556368066113806987449553072575343372028907331922","trace_of_frobenius": "657877501894328237357444332315020117536923257219387276263472201219398408051703"}}