Skip to main content

Standard curve database

Search

P-384

384-bit prime field Weierstrass curve.
Also known as: secp384r1ansip384r1
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff
a0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc
b0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
G(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
n0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
h0x1

Characteristics

  • OID:
    1.3.132.0.34
  • Seed:
    A335926AA319A27A1D00896A6773A4827ACDAC73
  • j-invariant:
    12550029517991417762405079599420518784762671286028430215113399824456742172589190955698027499893480133182923443701083
  • Trace of Frobenius:
    1388124618062372383606759648309780106643088307173319169677
  • Discriminant:
    38275261264050278989862136034342276004573039492779555073863190029182890449044186682105480613137214197175883602718257

SAGE

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff
K = GF(p)
a = K(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc)
b = K(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)
E = EllipticCurve(K, (a, b))
G = E(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)
E.set_order(0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 * 0x1)

PARI/GP

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff
a = Mod(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc, p)
b = Mod(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef, p)
E = ellinit([a, b])
E[16][1] = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 * 0x1
G = [Mod(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, p), Mod(0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f, p)]

JSON

{
"name": "P-384",
"desc": "",
"oid": "1.3.132.0.34",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff",
"bits": 384
},
"params": {
"a": {
"raw": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc"
},
"b": {
"raw": "0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"
}
},
"generator": {
"x": {
"raw": "0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7"
},
"y": {
"raw": "0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"
}
},
"order": "0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973",
"cofactor": "0x1",
"aliases": [
"secg/secp384r1",
"x963/ansip384r1"
],
"characteristics": {
"seed": "A335926AA319A27A1D00896A6773A4827ACDAC73",
"j_invariant": "12550029517991417762405079599420518784762671286028430215113399824456742172589190955698027499893480133182923443701083",
"discriminant": "38275261264050278989862136034342276004573039492779555073863190029182890449044186682105480613137214197175883602718257",
"trace_of_frobenius": "1388124618062372383606759648309780106643088307173319169677"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby