P-384
384-bit prime field Weierstrass curve.Also known as: secp384r1ansip384r1
Parameters
Characteristics
- OID:
1.3.132.0.34 - Seed:
A335926AA319A27A1D00896A6773A4827ACDAC73 - j-invariant:
12550029517991417762405079599420518784762671286028430215113399824456742172589190955698027499893480133182923443701083 - Trace of Frobenius:
1388124618062372383606759648309780106643088307173319169677 - Discriminant:
38275261264050278989862136034342276004573039492779555073863190029182890449044186682105480613137214197175883602718257
SAGE
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffffK = GF(p)a = K(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc)b = K(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef)E = EllipticCurve(K, (a, b))G = E(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f)E.set_order(0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 * 0x1)
PARI/GP
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffffa = Mod(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc, p)b = Mod(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef, p)E = ellinit([a, b])E[16][1] = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 * 0x1G = [Mod(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, p), Mod(0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f, p)]
JSON
{"name": "P-384","desc": "","oid": "1.3.132.0.34","form": "Weierstrass","field": {"type": "Prime","p": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff","bits": 384},"params": {"a": {"raw": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc"},"b": {"raw": "0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"}},"generator": {"x": {"raw": "0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7"},"y": {"raw": "0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"}},"order": "0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973","cofactor": "0x1","aliases": ["secg/secp384r1","x963/ansip384r1"],"characteristics": {"seed": "A335926AA319A27A1D00896A6773A4827ACDAC73","j_invariant": "12550029517991417762405079599420518784762671286028430215113399824456742172589190955698027499893480133182923443701083","discriminant": "38275261264050278989862136034342276004573039492779555073863190029182890449044186682105480613137214197175883602718257","trace_of_frobenius": "1388124618062372383606759648309780106643088307173319169677"}}