Skip to main content

Standard curve database

Search

K-571

571-bit binary field Weierstrass curve.

Koblitz curve.


Also known as: sect571k1ansit571k1
y2+xyx3+ax2+by^2 + xy \equiv x^3 + ax^2 + b

Parameters

NameValue
m571
f(x) x^571 + x^10 + x^5 + x^2 + 1
a0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
G(0x26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972, 0x349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3)
n0x20000000000000000000000000000000000000000000000000000000000000000000000131850e1f19a63e4b391a8db917f4138b630d84be5d639381e91deb45cfe778f637c1001
h0x4

Characteristics

  • OID:
    1.3.132.0.38
  • j-invariant:
    1
  • Trace of Frobenius:
    -148380926981691413899619140297051490364542574180493936232912339534208516828973111459843
  • Discriminant:
    1
  • Anomalous:
    false
  • Supersingular:
    false

SAGE

F.<x> = GF(2)[]
K = GF(2^571, name="x", modulus= x^571 + x^10 + x^5 + x^2 + 1)
E = EllipticCurve(K, (1, K.fetch_int(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000), 0, 0, K.fetch_int(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)))
E.set_order(0x20000000000000000000000000000000000000000000000000000000000000000000000131850e1f19a63e4b391a8db917f4138b630d84be5d639381e91deb45cfe778f637c1001 * 0x4)
G = E(K.fetch_int(0x26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972), K.fetch_int(0x349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3))


JSON

{
"name": "K-571",
"desc": "Koblitz curve.",
"oid": "1.3.132.0.38",
"form": "Weierstrass",
"field": {
"type": "Binary",
"bits": 571,
"degree": 571,
"poly": [
{
"coeff": "0x01",
"power": 571
},
{
"coeff": "0x01",
"power": 10
},
{
"coeff": "0x01",
"power": 5
},
{
"coeff": "0x01",
"power": 2
},
{
"coeff": "0x01",
"power": 0
}
],
"basis": "poly"
},
"params": {
"a": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
"b": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"
}
},
"generator": {
"x": {
"raw": "0x26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972"
},
"y": {
"raw": "0x349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3"
}
},
"order": "0x20000000000000000000000000000000000000000000000000000000000000000000000131850e1f19a63e4b391a8db917f4138b630d84be5d639381e91deb45cfe778f637c1001",
"cofactor": "0x4",
"aliases": [
"secg/sect571k1",
"x963/ansit571k1"
],
"characteristics": {
"j_invariant": "1",
"anomalous": false,
"discriminant": "1",
"supersingular": false,
"trace_of_frobenius": "-148380926981691413899619140297051490364542574180493936232912339534208516828973111459843"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby