K-283
283-bit binary field Weierstrass curve.Koblitz curve.
Parameters
Characteristics
- OID:
1.3.132.0.16 - j-invariant:
1 - Trace of Frobenius:
7777244870872830999287791970962823977569917 - Discriminant:
1 - Anomalous:
false - Supersingular:
false - CM-discriminant:
62165404551223330269422781018352605012557011072423593807226997823852966163742694371715 - Conductor:
1
SAGE
F.<x> = GF(2)[]K = GF(2^283, name="x", modulus= x^283 + x^12 + x^7 + x^5 + 1)E = EllipticCurve(K, (1, K.fetch_int(0x00000000000000000000000000000000000000000000000000000000000000000000000), 0, 0, K.fetch_int(0x00000000000000000000000000000000000000000000000000000000000000000000001)))E.set_order(0x1ffffffffffffffffffffffffffffffffffe9ae2ed07577265dff7f94451e061e163c61 * 0x4)G = E(K.fetch_int(0x503213f78ca44883f1a3b8162f188e553cd265f23c1567a16876913b0c2ac2458492836), K.fetch_int(0x1ccda380f1c9e318d90f95d07e5426fe87e45c0e8184698e45962364e34116177dd2259))
JSON
{"name": "K-283","desc": "Koblitz curve.","oid": "1.3.132.0.16","form": "Weierstrass","field": {"type": "Binary","bits": 283,"degree": 283,"poly": [{"coeff": "0x01","power": 283},{"coeff": "0x01","power": 12},{"coeff": "0x01","power": 7},{"coeff": "0x01","power": 5},{"coeff": "0x01","power": 0}],"basis": "poly"},"params": {"a": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000001"}},"generator": {"x": {"raw": "0x503213f78ca44883f1a3b8162f188e553cd265f23c1567a16876913b0c2ac2458492836"},"y": {"raw": "0x1ccda380f1c9e318d90f95d07e5426fe87e45c0e8184698e45962364e34116177dd2259"}},"order": "0x1ffffffffffffffffffffffffffffffffffe9ae2ed07577265dff7f94451e061e163c61","cofactor": "0x4","aliases": ["secg/sect283k1","x963/ansit283k1"],"characteristics": {"j_invariant": "1","anomalous": false,"cm_disc": "62165404551223330269422781018352605012557011072423593807226997823852966163742694371715","conductor": "1","discriminant": "1","supersingular": false,"trace_of_frobenius": "7777244870872830999287791970962823977569917"}}