Skip to main content

Standard curve database

Search

id-GostR3410-2001-CryptoPro-A-ParamSet

256-bit prime field Weierstrass curve.

RFC4357


y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97
a0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94
b0xa6
G(0x01, 0x8d91e471e0989cda27df505a453f2b7635294f2ddf23e3b122acc99c9e9f1e14)
n0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893
h0x1


SAGE

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97
K = GF(p)
a = K(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94)
b = K(0xa6)
E = EllipticCurve(K, (a, b))
G = E(0x01, 0x8d91e471e0989cda27df505a453f2b7635294f2ddf23e3b122acc99c9e9f1e14)
E.set_order(0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893 * 0x1)

PARI/GP

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97
a = Mod(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94, p)
b = Mod(0xa6, p)
E = ellinit([a, b])
E[16][1] = 0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893 * 0x1
G = [Mod(0x01, p), Mod(0x8d91e471e0989cda27df505a453f2b7635294f2ddf23e3b122acc99c9e9f1e14, p)]

JSON

{
"name": "id-GostR3410-2001-CryptoPro-A-ParamSet",
"desc": "RFC4357",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97",
"bits": 256
},
"params": {
"a": {
"raw": "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94"
},
"b": {
"raw": "0xa6"
}
},
"generator": {
"x": {
"raw": "0x01"
},
"y": {
"raw": "0x8d91e471e0989cda27df505a453f2b7635294f2ddf23e3b122acc99c9e9f1e14"
}
},
"order": "0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893",
"cofactor": "0x1"
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby