Skip to main content

Standard curve database

Search

brainpoolP512t1

512-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f3
a0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f0
b0x7cbbbcf9441cfab76e1890e46884eae321f70c0bcb4981527897504bec3e36a62bcdfa2304976540f6450085f2dae145c22553b465763689180ea2571867423e
G(0x640ece5c12788717b9c1ba06cbc2a6feba85842458c56dde9db1758d39c0313d82ba51735cdb3ea499aa77a7d6943a64f7a3f25fe26f06b51baa2696fa9035da, 0x5b534bd595f5af0fa2c892376c84ace1bb4e3019b71634c01131159cae03cee9d9932184beef216bd71df2dadf86a627306ecff96dbb8bace198b61e00f8b332)
n0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca70330870553e5c414ca92619418661197fac10471db1d381085ddaddb58796829ca90069
h0x1

Characteristics

  • OID:
    1.3.36.3.3.2.8.1.1.14
  • j-invariant:
    4509057370854421686186036011236846088241121285273238499519398365475754889496855834716692459441995587736488042188935834263974814230487405741844272852058903
  • Trace of Frobenius:
    133911538952573548431982907995132016398065354869678696041884562716142492272779
  • Discriminant:
    366142109299010382866812622361146894344809310498368746982237761809826581372599425766162889759353387519191323604313390132911397203950040971486611728352565
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    1491493701275038758609433802526525570360434940683059085224099531200009501735569754729830288440587493309575233061671546763849035935647007328892398685924028

SAGE

p = 0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f3
K = GF(p)
a = K(0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f0)
b = K(0x7cbbbcf9441cfab76e1890e46884eae321f70c0bcb4981527897504bec3e36a62bcdfa2304976540f6450085f2dae145c22553b465763689180ea2571867423e)
E = EllipticCurve(K, (a, b))
G = E(0x640ece5c12788717b9c1ba06cbc2a6feba85842458c56dde9db1758d39c0313d82ba51735cdb3ea499aa77a7d6943a64f7a3f25fe26f06b51baa2696fa9035da, 0x5b534bd595f5af0fa2c892376c84ace1bb4e3019b71634c01131159cae03cee9d9932184beef216bd71df2dadf86a627306ecff96dbb8bace198b61e00f8b332)
E.set_order(0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca70330870553e5c414ca92619418661197fac10471db1d381085ddaddb58796829ca90069 * 0x1)

PARI/GP

p = 0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f3
a = Mod(0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f0, p)
b = Mod(0x7cbbbcf9441cfab76e1890e46884eae321f70c0bcb4981527897504bec3e36a62bcdfa2304976540f6450085f2dae145c22553b465763689180ea2571867423e, p)
E = ellinit([a, b])
E[16][1] = 0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca70330870553e5c414ca92619418661197fac10471db1d381085ddaddb58796829ca90069 * 0x1
G = [Mod(0x640ece5c12788717b9c1ba06cbc2a6feba85842458c56dde9db1758d39c0313d82ba51735cdb3ea499aa77a7d6943a64f7a3f25fe26f06b51baa2696fa9035da, p), Mod(0x5b534bd595f5af0fa2c892376c84ace1bb4e3019b71634c01131159cae03cee9d9932184beef216bd71df2dadf86a627306ecff96dbb8bace198b61e00f8b332, p)]

JSON

{
"name": "brainpoolP512t1",
"desc": "",
"oid": "1.3.36.3.3.2.8.1.1.14",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f3",
"bits": 512
},
"params": {
"a": {
"raw": "0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca703308717d4d9b009bc66842aecda12ae6a380e62881ff2f2d82c68528aa6056583a48f0"
},
"b": {
"raw": "0x7cbbbcf9441cfab76e1890e46884eae321f70c0bcb4981527897504bec3e36a62bcdfa2304976540f6450085f2dae145c22553b465763689180ea2571867423e"
}
},
"generator": {
"x": {
"raw": "0x640ece5c12788717b9c1ba06cbc2a6feba85842458c56dde9db1758d39c0313d82ba51735cdb3ea499aa77a7d6943a64f7a3f25fe26f06b51baa2696fa9035da"
},
"y": {
"raw": "0x5b534bd595f5af0fa2c892376c84ace1bb4e3019b71634c01131159cae03cee9d9932184beef216bd71df2dadf86a627306ecff96dbb8bace198b61e00f8b332"
}
},
"order": "0xaadd9db8dbe9c48b3fd4e6ae33c9fc07cb308db3b3c9d20ed6639cca70330870553e5c414ca92619418661197fac10471db1d381085ddaddb58796829ca90069",
"cofactor": "0x1",
"characteristics": {
"j_invariant": "4509057370854421686186036011236846088241121285273238499519398365475754889496855834716692459441995587736488042188935834263974814230487405741844272852058903",
"anomalous": false,
"discriminant": "366142109299010382866812622361146894344809310498368746982237761809826581372599425766162889759353387519191323604313390132911397203950040971486611728352565",
"embedding_degree": "1491493701275038758609433802526525570360434940683059085224099531200009501735569754729830288440587493309575233061671546763849035935647007328892398685924028",
"supersingular": false,
"trace_of_frobenius": "133911538952573548431982907995132016398065354869678696041884562716142492272779"
}
}
JSON

© 2020 Jan Jancar | Built with Dox theme for Gatsby