Skip to main content

Standard curve database

Search

brainpoolP256t1

256-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377
a0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5374
b0x662c61c430d84ea4fe66a7733d0b76b7bf93ebc4af2f49256ae58101fee92b04
G(0xa3e8eb3cc1cfe7b7732213b23a656149afa142c47aafbc2b79a191562e1305f4, 0x2d996c823439c56d7f7b22e14644417e69bcb6de39d027001dabe8f35b25c9be)
n0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7
h0x1

Characteristics

  • OID:
    1.3.36.3.3.2.8.1.1.8
  • j-invariant:
    75626560605944752908522971663649678250473810658385377252202978737957396909999
  • Trace of Frobenius:
    300418416528525664980082381967979838673
  • Discriminant:
    88069733320865891917912206859792533286606565385107642270399326924131494932
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    38442478198522672110404873314500824546368765892207264769377759531531768179539
  • CM-discriminant:
    307539825588181376883238986516006596371851382387243695149962323398158084952331
  • Conductor:
    1

SAGE

p = 0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377
K = GF(p)
a = K(0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5374)
b = K(0x662c61c430d84ea4fe66a7733d0b76b7bf93ebc4af2f49256ae58101fee92b04)
E = EllipticCurve(K, (a, b))
G = E(0xa3e8eb3cc1cfe7b7732213b23a656149afa142c47aafbc2b79a191562e1305f4, 0x2d996c823439c56d7f7b22e14644417e69bcb6de39d027001dabe8f35b25c9be)
E.set_order(0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7 * 0x1)

PARI/GP

p = 0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377
a = Mod(0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5374, p)
b = Mod(0x662c61c430d84ea4fe66a7733d0b76b7bf93ebc4af2f49256ae58101fee92b04, p)
E = ellinit([a, b])
E[16][1] = 0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7 * 0x1
G = [Mod(0xa3e8eb3cc1cfe7b7732213b23a656149afa142c47aafbc2b79a191562e1305f4, p), Mod(0x2d996c823439c56d7f7b22e14644417e69bcb6de39d027001dabe8f35b25c9be, p)]

JSON

{
"name": "brainpoolP256t1",
"desc": "",
"oid": "1.3.36.3.3.2.8.1.1.8",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377",
"bits": 256
},
"params": {
"a": {
"raw": "0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5374"
},
"b": {
"raw": "0x662c61c430d84ea4fe66a7733d0b76b7bf93ebc4af2f49256ae58101fee92b04"
}
},
"generator": {
"x": {
"raw": "0xa3e8eb3cc1cfe7b7732213b23a656149afa142c47aafbc2b79a191562e1305f4"
},
"y": {
"raw": "0x2d996c823439c56d7f7b22e14644417e69bcb6de39d027001dabe8f35b25c9be"
}
},
"order": "0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7",
"cofactor": "0x1",
"characteristics": {
"j_invariant": "75626560605944752908522971663649678250473810658385377252202978737957396909999",
"anomalous": false,
"cm_disc": "307539825588181376883238986516006596371851382387243695149962323398158084952331",
"conductor": "1",
"discriminant": "88069733320865891917912206859792533286606565385107642270399326924131494932",
"embedding_degree": "38442478198522672110404873314500824546368765892207264769377759531531768179539",
"torsion_degrees": [
{
"full": 3,
"least": 3,
"r": 2
},
{
"full": 8,
"least": 8,
"r": 3
},
{
"full": 10,
"least": 2,
"r": 5
},
{
"full": 48,
"least": 48,
"r": 7
},
{
"full": 10,
"least": 10,
"r": 11
},
{
"full": 12,
"least": 3,
"r": 13
}
],
"supersingular": false,
"trace_of_frobenius": "300418416528525664980082381967979838673"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby