Skip to main content

Standard curve database

Search

brainpoolP256r1

256-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377
a0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9
b0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6
G(0x8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262, 0x547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997)
n0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7
h0x1

Characteristics

  • OID:
    1.3.36.3.3.2.8.1.1.7
  • j-invariant:
    75626560605944752908522971663649678250473810658385377252202978737957396909999
  • Trace of Frobenius:
    300418416528525664980082381967979838673
  • Discriminant:
    15036242490247342171513009477805930598983339216081386851174014206346325949410
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    38442478198522672110404873314500824546368765892207264769377759531531768179539
  • CM-discriminant:
    307539825588181376883238986516006596371851382387243695149962323398158084952331
  • Conductor:
    1

SAGE

p = 0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377
K = GF(p)
a = K(0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9)
b = K(0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6)
E = EllipticCurve(K, (a, b))
G = E(0x8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262, 0x547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997)
E.set_order(0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7 * 0x1)

PARI/GP

p = 0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377
a = Mod(0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9, p)
b = Mod(0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6, p)
E = ellinit([a, b])
E[16][1] = 0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7 * 0x1
G = [Mod(0x8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262, p), Mod(0x547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997, p)]

JSON

{
"name": "brainpoolP256r1",
"desc": "",
"oid": "1.3.36.3.3.2.8.1.1.7",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377",
"bits": 256
},
"params": {
"a": {
"raw": "0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9"
},
"b": {
"raw": "0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6"
}
},
"generator": {
"x": {
"raw": "0x8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262"
},
"y": {
"raw": "0x547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997"
}
},
"order": "0xa9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7",
"cofactor": "0x1",
"characteristics": {
"j_invariant": "75626560605944752908522971663649678250473810658385377252202978737957396909999",
"anomalous": false,
"cm_disc": "307539825588181376883238986516006596371851382387243695149962323398158084952331",
"conductor": "1",
"discriminant": "15036242490247342171513009477805930598983339216081386851174014206346325949410",
"embedding_degree": "38442478198522672110404873314500824546368765892207264769377759531531768179539",
"torsion_degrees": [
{
"full": 3,
"least": 3,
"r": 2
},
{
"full": 8,
"least": 8,
"r": 3
},
{
"full": 10,
"least": 2,
"r": 5
},
{
"full": 48,
"least": 48,
"r": 7
},
{
"full": 10,
"least": 10,
"r": 11
},
{
"full": 12,
"least": 3,
"r": 13
}
],
"supersingular": false,
"trace_of_frobenius": "300418416528525664980082381967979838673"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby