bn638
638-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
800995136978371572363525747477255032258950408689114271367829691469194143147501961435441086332935 - Discriminant:
641593209463000238284923228689168801117629789043238356871360716989515584497239494051781991794253619096481315470262367432019698642631650152075067922231951354925301839708740457083469793688592055
SAGE
p = 0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55C00086520021E55BFFFFF51FFFF4EB800000004C80015ACDFFFFFFFFFFFFECE00000000000000067K = GF(p)a = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101)E = EllipticCurve(K, (a, b))G = E(0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55C00086520021E55BFFFFF51FFFF4EB800000004C80015ACDFFFFFFFFFFFFECE00000000000000066, 0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010)E.set_order(0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55600086550021E555FFFFF54FFFF4EAC000000049800154D9FFFFFFFFFFFFEDA00000000000000061 * 0x01)
PARI/GP
p = 0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55C00086520021E55BFFFFF51FFFF4EB800000004C80015ACDFFFFFFFFFFFFECE00000000000000067a = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101, p)E = ellinit([a, b])E[16][1] = 0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55600086550021E555FFFFF54FFFF4EAC000000049800154D9FFFFFFFFFFFFEDA00000000000000061 * 0x01G = [Mod(0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55C00086520021E55BFFFFF51FFFF4EB800000004C80015ACDFFFFFFFFFFFFECE00000000000000066, p), Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010, p)]
JSON
{"name": "bn638","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55C00086520021E55BFFFFF51FFFF4EB800000004C80015ACDFFFFFFFFFFFFECE00000000000000067","bits": 638},"params": {"a": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101"}},"generator": {"x": {"raw": "0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55C00086520021E55BFFFFF51FFFF4EB800000004C80015ACDFFFFFFFFFFFFECE00000000000000066"},"y": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010"}},"order": "0x23FFFFFDC000000D7FFFFFB8000001D3FFFFF942D000165E3FFF94870000D52FFFFDD0E00008DE55600086550021E555FFFFF54FFFF4EAC000000049800154D9FFFFFFFFFFFFEDA00000000000000061","cofactor": "0x01","characteristics": {"j_invariant": "0","discriminant": "641593209463000238284923228689168801117629789043238356871360716989515584497239494051781991794253619096481315470262367432019698642631650152075067922231951354925301839708740457083469793688592055","trace_of_frobenius": "800995136978371572363525747477255032258950408689114271367829691469194143147501961435441086332935"}}