bn606
606-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
12222215858006915839141401255556695821975177558367937484927312121315564820050836996405726215 - Discriminant:
149382560479715729921650870888843346324510370210262391936546251975130529782979972747938509514543700633492700155237654428326390908646123885612873792268661751975617273279725264282339155
SAGE
p = 0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D94482DF27FFFC9AEDF0000000036512100245142137FFFFFB75D7BD900000000000000246C844E13K = GF(p)a = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D94482DF27FFFC9AEDF0000000036512100245142137FFFFFB75D7BD900000000000000246C844E12, 0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D9447CDF27FFFC9AEE08000000036511F8024513F107FFFFFB75D81DF00000000000000246C7E420D * 0x01)
PARI/GP
p = 0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D94482DF27FFFC9AEDF0000000036512100245142137FFFFFB75D7BD900000000000000246C844E13a = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D9447CDF27FFFC9AEE08000000036511F8024513F107FFFFFB75D81DF00000000000000246C7E420D * 0x01G = [Mod(0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D94482DF27FFFC9AEDF0000000036512100245142137FFFFFB75D7BD900000000000000246C844E12, p), Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn606","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D94482DF27FFFC9AEDF0000000036512100245142137FFFFFB75D7BD900000000000000246C844E13","bits": 606},"params": {"a": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D94482DF27FFFC9AEDF0000000036512100245142137FFFFFB75D7BD900000000000000246C844E12"},"y": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x23FFFFFFFFFFFEE00000000000036000000241AFFB7FFFFFF275E0024000001B1440000D9447CDF27FFFC9AEE08000000036511F8024513F107FFFFFB75D81DF00000000000000246C7E420D","cofactor": "0x01","characteristics": {"j_invariant": "0","discriminant": "149382560479715729921650870888843346324510370210262391936546251975130529782979972747938509514543700633492700155237654428326390908646123885612873792268661751975617273279725264282339155","trace_of_frobenius": "12222215858006915839141401255556695821975177558367937484927312121315564820050836996405726215"}}