bn574
574-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
186496302581962721809830439849867378820456264884631045871326327118225203759963374092295 - Discriminant:
34780870876742995377456858134373496984033068311331682913917171552933960384313251034752424287877192201334219790531446172327873978399527076876359580494778958227471204544936275 - Anomalous:
false - Supersingular:
false - Embedding degree:
12 - CM-discriminant:
139123483506971981509827432537493987936132273245326731655668686211735841537253004139009510655206186842615069331685934821932675457333223676459566995651997607706124854805659717 - Conductor:
1
SAGE
p = 0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2808400041FFFE73FFF7C000210000000000001380004DFFFD90000000000000000000000013K = GF(p)a = K(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2808400041FFFE73FFF7C000210000000000001380004DFFFD90000000000000000000000012, 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2807E0003EFFFE85FFF820001F80000000000010800041FFFDF000000000000000000000000D * 0x01)
PARI/GP
p = 0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2808400041FFFE73FFF7C000210000000000001380004DFFFD90000000000000000000000013a = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2807E0003EFFFE85FFF820001F80000000000010800041FFFDF000000000000000000000000D * 0x01G = [Mod(0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2808400041FFFE73FFF7C000210000000000001380004DFFFD90000000000000000000000012, p), Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn574","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2808400041FFFE73FFF7C000210000000000001380004DFFFD90000000000000000000000013","bits": 574},"params": {"a": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2808400041FFFE73FFF7C000210000000000001380004DFFFD90000000000000000000000012"},"y": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x2400023FFFFB7FFF4C00002400167FFFEE01AEE014423FAEFFFB5C000A200050FFFF2807E0003EFFFE85FFF820001F80000000000010800041FFFDF000000000000000000000000D","cofactor": "0x01","characteristics": {"j_invariant": "0","anomalous": false,"cm_disc": "139123483506971981509827432537493987936132273245326731655668686211735841537253004139009510655206186842615069331685934821932675457333223676459566995651997607706124854805659717","conductor": "1","discriminant": "34780870876742995377456858134373496984033068311331682913917171552933960384313251034752424287877192201334219790531446172327873978399527076876359580494778958227471204544936275","embedding_degree": "12","torsion_degrees": [{"full": 3,"least": 3,"r": 2}],"supersingular": false,"trace_of_frobenius": "186496302581962721809830439849867378820456264884631045871326327118225203759963374092295"}}