bn542
542-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
2845711812853053972806387468884004947678235462567670984735634579507964130977906695 - Discriminant:
8098075721811414878105028299024751526203735822988204570759586766702677409513512479452243326535098163859087683174740008257961979909363199815965376947448202431297875
SAGE
p = 0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A2084511080008D000090510005110800108138025380001B00000084000001380000013K = GF(p)a = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A2084511080008D000090510005110800108138025380001B00000084000001380000012, 0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A207E510FC0008700009051000510FC000FC108025080001B0000007E00000108000000D * 0x01)
PARI/GP
p = 0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A2084511080008D000090510005110800108138025380001B00000084000001380000013a = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A207E510FC0008700009051000510FC000FC108025080001B0000007E00000108000000D * 0x01G = [Mod(0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A2084511080008D000090510005110800108138025380001B00000084000001380000012, p), Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn542","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A2084511080008D000090510005110800108138025380001B00000084000001380000013","bits": 542},"params": {"a": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A2084511080008D000090510005110800108138025380001B00000084000001380000012"},"y": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x2400090000D80009000024000090001B01B1B051090510001B00D8001B0510D8A207E510FC0008700009051000510FC000FC108025080001B0000007E00000108000000D","cofactor": "0x01","characteristics": {"j_invariant": "0","discriminant": "8098075721811414878105028299024751526203735822988204570759586766702677409513512479452243326535098163859087683174740008257961979909363199815965376947448202431297875","trace_of_frobenius": "2845711812853053972806387468884004947678235462567670984735634579507964130977906695"}}