bn478
478-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
662567649291894123450065105820326672097321614256273183056335502227537927 - Discriminant:
438995889888186407347652991425301965681188858026820794321677547168174289793337316790981018819616267513532082540968716717668009346359904036714835
SAGE
p = 0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D28085442328002888F96F2944D7DED781430FFD780065FFF010020FFFD900013K = GF(p)a = K(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D28085442328002888F96F2944D7DED781430FFD780065FFF010020FFFD900012, 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D2807F442328002888F9872944D7E0578112F7FD780062FFF07001F7FFDF0000D * 0x01)
PARI/GP
p = 0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D28085442328002888F96F2944D7DED781430FFD780065FFF010020FFFD900013a = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D2807F442328002888F9872944D7E0578112F7FD780062FFF07001F7FFDF0000D * 0x01G = [Mod(0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D28085442328002888F96F2944D7DED781430FFD780065FFF010020FFFD900012, p), Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn478","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D28085442328002888F96F2944D7DED781430FFD780065FFF010020FFFD900013","bits": 478},"params": {"a": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D28085442328002888F96F2944D7DED781430FFD780065FFF010020FFFD900012"},"y": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x23FFFFFFFFFFFFFEDFFFFFFFEE0001B3600000006BFFF5DB835FFF5D2807F442328002888F9872944D7E0578112F7FD780062FFF07001F7FFDF0000D","cofactor": "0x01","characteristics": {"j_invariant": "0","discriminant": "438995889888186407347652991425301965681188858026820794321677547168174289793337316790981018819616267513532082540968716717668009346359904036714835","trace_of_frobenius": "662567649291894123450065105820326672097321614256273183056335502227537927"}}