bn446
446-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
10109980000181489923001201093401906549415298505746886291297633566727 - Discriminant:
102211695604069718983520304652693874995639508460729604902280098199792736381528662976886082950231100101353700265360419596271313310490295 - Anomalous:
false - Supersingular:
false - Embedding degree:
12 - CM-discriminant:
16353871296651155037363248744431019999302321353716736784364815711966433421844578816704853223993239939954615430517437259951758228901085 - Conductor:
5
SAGE
p = 0x2400000000000000002400000002D00000000D800000021C0000001800000000870000000B0400000057C00000015C000000132000000067K = GF(p)a = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101)E = EllipticCurve(K, (a, b))G = E(0x2400000000000000002400000002D00000000D800000021C0000001800000000870000000B0400000057C00000015C000000132000000066, 0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010)E.set_order(0x2400000000000000002400000002D00000000D800000021C00000017A0000000870000000AD400000054C000000156000000126000000061 * 0x01)
PARI/GP
p = 0x2400000000000000002400000002D00000000D800000021C0000001800000000870000000B0400000057C00000015C000000132000000067a = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101, p)E = ellinit([a, b])E[16][1] = 0x2400000000000000002400000002D00000000D800000021C00000017A0000000870000000AD400000054C000000156000000126000000061 * 0x01G = [Mod(0x2400000000000000002400000002D00000000D800000021C0000001800000000870000000B0400000057C00000015C000000132000000066, p), Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010, p)]
JSON
{"name": "bn446","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x2400000000000000002400000002D00000000D800000021C0000001800000000870000000B0400000057C00000015C000000132000000067","bits": 446},"params": {"a": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101"}},"generator": {"x": {"raw": "0x2400000000000000002400000002D00000000D800000021C0000001800000000870000000B0400000057C00000015C000000132000000066"},"y": {"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010"}},"order": "0x2400000000000000002400000002D00000000D800000021C00000017A0000000870000000AD400000054C000000156000000126000000061","cofactor": "0x01","characteristics": {"j_invariant": "0","anomalous": false,"cm_disc": "16353871296651155037363248744431019999302321353716736784364815711966433421844578816704853223993239939954615430517437259951758228901085","conductor": "5","discriminant": "102211695604069718983520304652693874995639508460729604902280098199792736381528662976886082950231100101353700265360419596271313310490295","embedding_degree": "12","torsion_degrees": [{"full": 3,"least": 3,"r": 2},{"full": 6,"least": 2,"r": 3},{"full": 24,"least": 24,"r": 5},{"full": 6,"least": 3,"r": 7},{"full": 6,"least": 6,"r": 11},{"full": 12,"least": 3,"r": 13}],"supersingular": false,"trace_of_frobenius": "10109980000181489923001201093401906549415298505746886291297633566727"}}