bn414
414-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
154267229207681125708793071161652324726038701923943665681563655 - Discriminant:
23798378007415224600523786020682647333689401448557870707284910146274969430638668827605864233418695199132888067995603277183315
SAGE
p = 0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013K = GF(p)a = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012, 0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D * 0x01)
PARI/GP
p = 0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013a = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D * 0x01G = [Mod(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012, p), Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn414","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013","bits": 414},"params": {"a": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012"},"y": {"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D","cofactor": "0x01","characteristics": {"j_invariant": "0","discriminant": "23798378007415224600523786020682647333689401448557870707284910146274969430638668827605864233418695199132888067995603277183315","trace_of_frobenius": "154267229207681125708793071161652324726038701923943665681563655"}}