Skip to main content

Standard curve database

Search

bn414

414-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013
a0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002
G(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012, 0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)
n0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D
h0x01

Characteristics

  • j-invariant:
    0
  • Trace of Frobenius:
    154267229207681125708793071161652324726038701923943665681563655
  • Discriminant:
    23798378007415224600523786020682647333689401448557870707284910146274969430638668827605864233418695199132888067995603277183315

SAGE

p = 0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013
K = GF(p)
a = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)
b = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)
E = EllipticCurve(K, (a, b))
G = E(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012, 0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)
E.set_order(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D * 0x01)

PARI/GP

p = 0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013
a = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)
b = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)
E = ellinit([a, b])
E[16][1] = 0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D * 0x01
G = [Mod(0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012, p), Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]

JSON

{
"name": "bn414",
"desc": "",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000013",
"bits": 414
},
"params": {
"a": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
"b": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"
}
},
"generator": {
"x": {
"raw": "0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF60544845142000765EFFF7C0000021138004DFFFFFD900000000000012"
},
"y": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"
}
},
"order": "0x240024000D7EE23F2823CA035D31B144364C75E59AEFFF605447E513F00070607FF82000001F9080041FFFFFDF0000000000000D",
"cofactor": "0x01",
"characteristics": {
"j_invariant": "0",
"discriminant": "23798378007415224600523786020682647333689401448557870707284910146274969430638668827605864233418695199132888067995603277183315",
"trace_of_frobenius": "154267229207681125708793071161652324726038701923943665681563655"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby