bn382
382-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
2353932232174051770881173201777159236219815696568919523335 - Discriminant:
5540996953667913971058039301942914304734176495422447785045292539108217242186829586959562222833658991069414454982995 - Anomalous:
false - Supersingular:
false - Embedding degree:
12 - CM-discriminant:
22163987814671655884232157207771657218936705981689791140178816224200694916976437174636471732098416148581088900415557 - Conductor:
1
SAGE
p = 0x240026400F3D82B2E42DE125B00158405B710818AC00000840046200950400000000001380052E000000000000000013K = GF(p)a = K(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x240026400F3D82B2E42DE125B00158405B710818AC00000840046200950400000000001380052E000000000000000012, 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x240026400F3D82B2E42DE125B00158405B710818AC000007E0042F008E3E00000000001080046200000000000000000D * 0x01)
PARI/GP
p = 0x240026400F3D82B2E42DE125B00158405B710818AC00000840046200950400000000001380052E000000000000000013a = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x240026400F3D82B2E42DE125B00158405B710818AC000007E0042F008E3E00000000001080046200000000000000000D * 0x01G = [Mod(0x240026400F3D82B2E42DE125B00158405B710818AC00000840046200950400000000001380052E000000000000000012, p), Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn382","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x240026400F3D82B2E42DE125B00158405B710818AC00000840046200950400000000001380052E000000000000000013","bits": 382},"params": {"a": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x240026400F3D82B2E42DE125B00158405B710818AC00000840046200950400000000001380052E000000000000000012"},"y": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x240026400F3D82B2E42DE125B00158405B710818AC000007E0042F008E3E00000000001080046200000000000000000D","cofactor": "0x01","characteristics": {"j_invariant": "0","anomalous": false,"cm_disc": "22163987814671655884232157207771657218936705981689791140178816224200694916976437174636471732098416148581088900415557","conductor": "1","discriminant": "5540996953667913971058039301942914304734176495422447785045292539108217242186829586959562222833658991069414454982995","embedding_degree": "12","torsion_degrees": [{"full": 3,"least": 3,"r": 2},{"full": 2,"least": 2,"r": 3}],"supersingular": false,"trace_of_frobenius": "2353932232174051770881173201777159236219815696568919523335"}}