Skip to main content

Standard curve database

Search

bn350

350-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000013
a0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000002
G(0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000012, 0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)
n0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0A70F70052F7D78413FE08173FF7C07E0000042000000D
h0x01

Characteristics

  • j-invariant:
    0
  • Trace of Frobenius:
    35917316178020966140770026648761406645010658995732487
  • Discriminant:
    1290053601431926622698139429963477963560185337848708333001329190095450433717605248005163618066274214476115
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    12

SAGE

p = 0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000013
K = GF(p)
a = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000)
b = K(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000002)
E = EllipticCurve(K, (a, b))
G = E(0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000012, 0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)
E.set_order(0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0A70F70052F7D78413FE08173FF7C07E0000042000000D * 0x01)

PARI/GP

p = 0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000013
a = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, p)
b = Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000002, p)
E = ellinit([a, b])
E[16][1] = 0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0A70F70052F7D78413FE08173FF7C07E0000042000000D * 0x01
G = [Mod(0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000012, p), Mod(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]

JSON

{
"name": "bn350",
"desc": "",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000013",
"bits": 350
},
"params": {
"a": {
"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
"b": {
"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000002"
}
},
"generator": {
"x": {
"raw": "0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0AD0F6A0530FD78443FDF01A3FF64084000004E0000012"
},
"y": {
"raw": "0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001"
}
},
"order": "0x23FFB80035FFEE24020A01CAFD738EC3F24B475EBC0A70F70052F7D78413FE08173FF7C07E0000042000000D",
"cofactor": "0x01",
"characteristics": {
"j_invariant": "0",
"anomalous": false,
"discriminant": "1290053601431926622698139429963477963560185337848708333001329190095450433717605248005163618066274214476115",
"embedding_degree": "12",
"supersingular": false,
"trace_of_frobenius": "35917316178020966140770026648761406645010658995732487"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby