Skip to main content

Standard curve database

Search

bn318

318-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101B
a0x00000000000000000000000000000000000000000000000000000000000000000000000000000000
b0x00000000000000000000000000000000000000000000000000000000000000000000000000000002
G(0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101A, 0x00000000000000000000000000000000000000000000000000000000000000000000000000000001)
n0x24009000D800900024075015F015F0075000008EE11DC08EE000000004DB84DB8000000000000FE5
h0x01

Characteristics

  • j-invariant:
    0
  • Trace of Frobenius:
    548079839685593379889100768354473324754975588407
  • Discriminant:
    300391510669785740008207650393722453451551004041839877989597999344720209212220677955394396490075
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    12
  • CM-discriminant:
    1201566042679142960032830601574889813806204016166811432118706403998991736080528238496822610378805

SAGE

p = 0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101B
K = GF(p)
a = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000)
b = K(0x00000000000000000000000000000000000000000000000000000000000000000000000000000002)
E = EllipticCurve(K, (a, b))
G = E(0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101A, 0x00000000000000000000000000000000000000000000000000000000000000000000000000000001)
E.set_order(0x24009000D800900024075015F015F0075000008EE11DC08EE000000004DB84DB8000000000000FE5 * 0x01)

PARI/GP

p = 0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101B
a = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000, p)
b = Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000002, p)
E = ellinit([a, b])
E[16][1] = 0x24009000D800900024075015F015F0075000008EE11DC08EE000000004DB84DB8000000000000FE5 * 0x01
G = [Mod(0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101A, p), Mod(0x00000000000000000000000000000000000000000000000000000000000000000000000000000001, p)]

JSON

{
"name": "bn318",
"desc": "",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101B",
"bits": 318
},
"params": {
"a": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000"
},
"b": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000002"
}
},
"generator": {
"x": {
"raw": "0x24009000D800900024075015F015F0075000008F411E808F4000000004E484E4800000000000101A"
},
"y": {
"raw": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000001"
}
},
"order": "0x24009000D800900024075015F015F0075000008EE11DC08EE000000004DB84DB8000000000000FE5",
"cofactor": "0x01",
"characteristics": {
"j_invariant": "0",
"anomalous": false,
"cm_disc": "1201566042679142960032830601574889813806204016166811432118706403998991736080528238496822610378805",
"discriminant": "300391510669785740008207650393722453451551004041839877989597999344720209212220677955394396490075",
"embedding_degree": "12",
"supersingular": false,
"trace_of_frobenius": "548079839685593379889100768354473324754975588407"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby