Skip to main content

Standard curve database

Search

bn286

286-bit prime field Weierstrass curve.
y2x3+ax+by^2 \equiv x^3 + ax + b

Parameters

NameValue
p0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013
a0x000000000000000000000000000000000000000000000000000000000000000000000000
b0x000000000000000000000000000000000000000000000000000000000000000000000002
G(0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012, 0x000000000000000000000000000000000000000000000000000000000000000000000001)
n0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D
h0x01

Characteristics

  • j-invariant:
    0
  • Trace of Frobenius:
    8366863340207706741299716820480866394308615
  • Discriminant:
    70004402153711663438486789763681164697717379781714415888917198592851957854802452412755
  • Anomalous:
    false
  • Supersingular:
    false
  • Embedding degree:
    12
  • CM-discriminant:
    280017608614846653753947159054724658790869510759994323347962053071691010938343415349317
  • Conductor:
    1

SAGE

p = 0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013
K = GF(p)
a = K(0x000000000000000000000000000000000000000000000000000000000000000000000000)
b = K(0x000000000000000000000000000000000000000000000000000000000000000000000002)
E = EllipticCurve(K, (a, b))
G = E(0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012, 0x000000000000000000000000000000000000000000000000000000000000000000000001)
E.set_order(0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D * 0x01)

PARI/GP

p = 0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013
a = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000, p)
b = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000002, p)
E = ellinit([a, b])
E[16][1] = 0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D * 0x01
G = [Mod(0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012, p), Mod(0x000000000000000000000000000000000000000000000000000000000000000000000001, p)]

JSON

{
"name": "bn286",
"desc": "",
"form": "Weierstrass",
"field": {
"type": "Prime",
"p": "0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013",
"bits": 286
},
"params": {
"a": {
"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000"
},
"b": {
"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000002"
}
},
"generator": {
"x": {
"raw": "0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012"
},
"y": {
"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000001"
}
},
"order": "0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D",
"cofactor": "0x01",
"characteristics": {
"j_invariant": "0",
"anomalous": false,
"cm_disc": "280017608614846653753947159054724658790869510759994323347962053071691010938343415349317",
"conductor": "1",
"discriminant": "70004402153711663438486789763681164697717379781714415888917198592851957854802452412755",
"embedding_degree": "12",
"torsion_degrees": [
{
"full": 3,
"least": 3,
"r": 2
},
{
"full": 2,
"least": 2,
"r": 3
},
{
"full": 8,
"least": 8,
"r": 5
},
{
"full": 6,
"least": 2,
"r": 7
}
],
"supersingular": false,
"trace_of_frobenius": "8366863340207706741299716820480866394308615"
}
}

© 2020 Jan Jancar | Built with Dox theme for Gatsby