bn286
286-bit prime field Weierstrass curve.Parameters
Characteristics
- j-invariant:
0 - Trace of Frobenius:
8366863340207706741299716820480866394308615 - Discriminant:
70004402153711663438486789763681164697717379781714415888917198592851957854802452412755 - Anomalous:
false - Supersingular:
false - Embedding degree:
12 - CM-discriminant:
280017608614846653753947159054724658790869510759994323347962053071691010938343415349317 - Conductor:
1
SAGE
p = 0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013K = GF(p)a = K(0x000000000000000000000000000000000000000000000000000000000000000000000000)b = K(0x000000000000000000000000000000000000000000000000000000000000000000000002)E = EllipticCurve(K, (a, b))G = E(0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012, 0x000000000000000000000000000000000000000000000000000000000000000000000001)E.set_order(0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D * 0x01)
PARI/GP
p = 0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013a = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000000, p)b = Mod(0x000000000000000000000000000000000000000000000000000000000000000000000002, p)E = ellinit([a, b])E[16][1] = 0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D * 0x01G = [Mod(0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012, p), Mod(0x000000000000000000000000000000000000000000000000000000000000000000000001, p)]
JSON
{"name": "bn286","desc": "","form": "Weierstrass","field": {"type": "Prime","p": "0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000013","bits": 286},"params": {"a": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000000"},"b": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000002"}},"generator": {"x": {"raw": "0x240900D8991B25B0E2CB51DDA534A205391892080A008108000853813800138000000012"},"y": {"raw": "0x000000000000000000000000000000000000000000000000000000000000000000000001"}},"order": "0x240900D8991B25B0E2CB51DDA534A205391831FC099FC0FC0007F081080010800000000D","cofactor": "0x01","characteristics": {"j_invariant": "0","anomalous": false,"cm_disc": "280017608614846653753947159054724658790869510759994323347962053071691010938343415349317","conductor": "1","discriminant": "70004402153711663438486789763681164697717379781714415888917198592851957854802452412755","embedding_degree": "12","torsion_degrees": [{"full": 3,"least": 3,"r": 2},{"full": 2,"least": 2,"r": 3},{"full": 8,"least": 8,"r": 5},{"full": 6,"least": 2,"r": 7}],"supersingular": false,"trace_of_frobenius": "8366863340207706741299716820480866394308615"}}