pyecsca.ec.curve module¶
Provides an elliptic curve class.
- class EllipticCurve(model, coordinate_model, prime, neutral, parameters)[source]¶
Bases:
object
An elliptic curve.
>>> from pyecsca.ec.params import get_params >>> params = get_params("secg", "secp256r1", "projective") >>> curve = params.curve >>> curve.prime 115792089210356248762697446949407573530086143415290314195533631308867097853951 >>> curve.parameters {'a': 115792089210356248762697446949407573530086143415290314195533631308867097853948, 'b': 41058363725152142129326129780047268409114441015993725554835256314039467401291} >>> curve.neutral InfinityPoint(shortw/projective)
You can also use the curve object to operate on affine points.
>>> from pyecsca.ec.coordinates import AffineCoordinateModel >>> affine = AffineCoordinateModel(curve.model) >>> points_P = sorted(curve.affine_lift_x(Mod(5, curve.prime)), key=lambda p: int(p.x)) >>> points_P [Point([x=5, y=84324075564118526167843364924090959423913731519542450286139900919689799730227] in shortw/affine), Point([x=5, y=31468013646237722594854082025316614106172411895747863909393730389177298123724] in shortw/affine)] >>> P = points_P[0] >>> Q = Point(affine, x=Mod(106156966968002564385990772707119429362097710917623193504777452220576981858057, curve.prime), y=Mod(89283496902772247016522581906930535517715184283144143693965440110672128480043, curve.prime)) >>> curve.affine_add(P, Q) Point([x=47810148756503743072934797587322364123448575767318638174816008618047855704885, y=13254714647685362616794785795476294517294947485316674051531702458991837320158] in shortw/affine) >>> curve.affine_multiply(P, 10) Point([x=102258728610797412855984739741975475478412665729440354248608608794190482472287, y=108928182525231985447294771990422379640574982656217795144410067267239526061757] in shortw/affine) >>> curve.affine_random() Point([x=..., y=...] in shortw/affine) >>> curve.is_on_curve(P) True >>> curve.is_neutral(P) False
-
model:
CurveModel
¶ The model of the curve.
-
coordinate_model:
CoordinateModel
¶ The coordinate system of the curve.
-
prime:
int
¶ The prime specifying the base prime field of the curve.
-
parameters:
MutableMapping
[str
,Mod
]¶ The values of the parameters defining the curve, these cover the curve model and coordinate system parameters.
- affine_add(one, other)[source]¶
Add two affine points using the affine addition formula.
Handles the case of point at infinity gracefully (short-circuits).
- affine_double(one)[source]¶
Double an affine point using the affine doubling formula.
Handles the case of point at infinity gracefully (short-circuits).
- affine_negate(one)[source]¶
Negate an affine point using the affine negation formula.
Handles the case of point at infinity gracefully (short-circuits).
- affine_multiply(point, scalar)[source]¶
Multiply an affine point by a scalar using the affine doubling and addition formulas.
Handles the case of point at infinity gracefully (short-circuits).
- property affine_neutral: Point | None¶
Get the neutral point in affine form, if it has one, otherwise
None
.- Returns:
The affine neutral point or
None
.
- property neutral_is_affine¶
Whether the neutral point is an affine point.
- to_coords(coordinate_model)[source]¶
Convert this curve into a different coordinate model, only possible if it is currently affine.
- Parameters:
coordinate_model¶ (
CoordinateModel
) – The target coordinate model.- Return type:
- Returns:
The transformed elliptic curve.
- to_affine()[source]¶
Convert this curve into the affine coordinate model, if possible.
- Return type:
- Returns:
The transformed elliptic curve.
- decode_point(encoded)[source]¶
Decode a point encoded as a sequence of bytes (ANSI X9.62).
This decoding is the same as ANSI X9.63 for the affine coordinate system and for others it only implements the uncompressed variant.
Warning
The point is not validated to be on the curve (if the uncompressed encoding is used).
-
model: