€CSsCa
@ p)/;mj

Reverse engineering black-box elliptic curve
cryptography via side-channel analysis

Jan Jancar!, Vojtech Suchanek?, Petr Svenda®, Vladimir Sedlacek?, tukasz Chmielewski®

CHES 2024
pyecsca.org

CRGxCSl

RUTGERS
UNIVERSITY

https://neuromancer.sk/pyecsca/
https://pyecsca.org/papers.html
https://pyecsca.org/
https://crocs.fi.muni.cz/
https://rutgers.edu/

Outline

Why?
Elliptic Curve Cryptography
Side-Channel Attacks

RQ1: Real-world ECC implementations

RQ2: Space of possible ECC implementations
RQ3: Reverse-engineering ECC implementations
Conclusions

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 2/14

Why?

Elliptic Curve Cryptography

Elliptic Curve: y2 = x> +ax +b R
Points (x, y) € E(K) form an abelian group
Scalar multiplication
[n] : E(K) — E(K)
P—[nP=P+P+...+P

N—————
n times
ECDLP: Find x given [x]G and G € E(F})
Generally hard when K =,

Short Weierstrass %\i

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3/14

Why?

Elliptic Curve Cryptography

Elliptic Curve: by? = x3 + ax? + x

Points (x, y) € E(K) form an abelian group
Scalar multiplication
[n] : E(K) — E(K)
P—[nP=P+P+. .. +P

N—————

n times

ECDLP: Find x given [x]G and G € E(F})
Generally hard when K =,

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

Y, ;';(E+Q)

N

3(P‘fQ)

~

Montgomery %

N

3/14

Why?

Elliptic Curve Cryptography

Elliptic Curve: x2 + y2 = c%(1 + dx2y?)
Points (x, y) € E(K) form an abelian group
Scalar multiplication
[n] : E(K) — E(K)
P—[nP=P+P+. .. +P

N—————
n times
ECDLP: Find x given [x]G and G € E(F})
Generally hard when K =,

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

Edwards

kD)

s

3/14

Why?

Elliptic Curve Cryptography

Elliptic Curve: ax? + y? = 1 + dx%y? R y
Points (x, y) € E(K) form an abelian group

Scalar multiplication
[n] : E(K) — E(K) p

Pis[NP=P+P+.. +P < ¢ ;
—_—— -
n times F+o

ECDLP: Find x given [x]G and G € E(F})
Generally hard when K =,

7
Twisted Edwards 4

e

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3/14

Why?

Elliptic Curve Cryptography

Elliptic Curve:

Points (x, y) € E(K) form an abelian group
Scalar multiplication
[n] : E(K) — E(K)
P—[nP=P+P+...+P

—————

n times

ECDLP: Find x given [x]G and G € E(F))
Generally hard when K =T,

ECDH: Diffie-Hellman on E(F))
Scalar multiplication + hash -> Shared secret

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

3/14

Why?

Elliptic Curve Cryptography

Elliptic Curve:

Points (x, y) € E(K) form an abelian group
Scalar multiplication
[n] : E(K) — E(K)
P—[nP=P+P+...+P

—————

n times

ECDLP: Find x given [x]G and G € E(F))
Generally hard when K =T,

ECDH: Diffie-Hellman on E(F))
Scalar multiplication + hash -> Shared secret
ECDSA: Digital Signature Algorithm on E([F,)
Random sample + scalar multiplication + hash + mod. arithmetic -> Signature

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3/14

Why?

Elliptic Curve Cryptography

Elliptic Curve:

Points (x, y) € E(K) form an abelian group
Scalar multiplication
[n] : E(K) — E(K)
P—[nP=P+P+...+P

—————

n times

ECDLP: Find x given [x]G and G € E(F))
Generally hard when K =T,

ECDH: Diffie-Hellman on E(F))

Scalar multiplication + hash -> Shared secret
ECDSA: Digital Signature Algorithm on E([F,)

Random sample + scalar multiplication + hash + mod. arithmetic -> Signature
XDH, EdDSA, ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Y =x*+ax+b

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?
Elliptic Curve Cryptography
Many implementation possibilities
Curve model

yvi=x +ax+b
xt+y? = (1 +dxy?)

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
yvi=x +ax+b
xt+y? = (1 +dxy?)
ax? +y? = 1+dx%y?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
yvi=x +ax+b
xt+y? = (1 +dxy?)
ax? +y? = 1+dx%y?
by? = x> +ax? +x

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?
Elliptic Curve Cryptography
Many implementation possibilities
Curve model

Coordinates
X,

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
X.,Y)
X,Y,2)

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
X.,Y)

X,Y,2)
X,Y,Z,22) ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?
Elliptic Curve Cryptography
Many implementation possibilities
Curve model

Coordinates
Addition formulas

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?
Elliptic Curve Cryptography
Many implementation possibilities
Curve model

Coordinates
Addition formulas

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

Y122 = Y1*Z2

X1Z2 = X1*Z2

7172 = 71*%72
u=Y2¥*¥7Z1-Y1Z2

uu = u2

VvV = X2¥Z1-X1Z2

Vv = v2

VVV = V¥vv

R = vv¥X1Z72

A =uu¥*Z172-vvv-2*R
X3 = v¥*A

Y3 = u*(R-A)-vvv¥*Y1Z2
73 = vvv¥*Z172

4/14

Why?

Elliptic Curve Cryptography

179 — \/1%79)

Many implementation possibilities Ul = X1%72
Curve model U2 = X2*%71
Coordinates S1 = Y1%Z2
Addition formulas S2 =Y2*71
27 = 71%72
T =U1+U2
M= S1+S2
A R =T2-Ul*U2+a*ZZ2
; F=77*M
L = M*F
G =T*L
W=R2-G
— X3 = 2*¥F*W
Y3 = R*¥(G-2*W)-L2
Z3 = 2¥F¥F2

f i il N |

Nl 2~

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities Ul=X1%77 1
Eurvz.m"tdel u = Y2¥Z1-Y1*Z2
oordinates v = X2%71-X1%72
Addition formulas A = u2¥Z1%Z2-v3-2%v2*¥X1¥Z2
X3 = v¥A
Y3 = u*(v2*¥X1*¥Z2-A)-v3¥Y1¥Z2
73 = v3%71%72
=TZ-UT*UZ¥a~2ZZ
) F=22*M
L = M*F
G = T*L
W=R2-G
X3 = 2%F*W
Y3 = R¥(G-2%W)-L2
Z3 = 2¥F¥F2

f i il N |

Nl 2~

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates

Addition formulas
Scalar multiplier

fixed-base, variale-base, multi-scalar

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
Addition formulas
Scalar multiplier
fixed-base, variale-base, multi-scalar

Algorithm Left-to-right double-and-add

function LTR(G, k = (ki . . . , ko)2)
R=0
for / = [downto O do
R = dbl(R)
if k; = 1 then
R =add(R, G)
return R

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
Addition formulas
Scalar multiplier
fixed-base, variale-base, multi-scalar

Algorithm Fixed-window scalar multiplier

function Window(G, k = (k, . .., ko)2)
PrecomuptedTable = [0« G,1 % G,...,2" — 1 x Q]
k = recode k to w-bit windows
T=0
for i = 1 to |k| do
T=2"T
T = T + PrecomputedTable[k]
return T

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
Addition formulas
Scalar multiplier
Finite field operations

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates

Addition formulas
Scalar multiplier

Finite field operations
Multiplication: Toom-Cook, Karatsuba, ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
Addition formulas
Scalar multiplier
Finite field operations

Multiplication: Toom-Cook, Karatsuba, ...

Squaring: Toom-Cook, Karatsuba, ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
Addition formulas
Scalar multiplier
Finite field operations

Multiplication: Toom-Cook, Karatsuba, ...

Squaring: Toom-Cook, Karatsuba, ...
Reduction: Barret, Montgomery, ...

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Elliptic Curve Cryptography

Many implementation possibilities
Curve model
Coordinates
Addition formulas
Scalar multiplier
Finite field operations

Multiplication: Toom-Cook, Karatsuba, ...

Squaring: Toom-Cook, Karatsuba, ...
Reduction: Barret, Montgomery, ...
Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

4/14

Why?

Side-Channel Attacks

Simple Power Analysis

Differential Power Analysis

Correlation Power Analysis

Mutual Information Analysis

Refined Power Analysis, Zero-value Point Attack, Exceptional Procedure Attack
Template attacks

Leakage assessment

Doubling attack, Collision attacks

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 5/14

Why?

Side-Channel Attacks

Simple Power Analysis

Differential Power Analysis

Correlation Power Analysis

Mutual Information Analysis

Refined Power Analysis, Zero-value Point Attack, Exceptional Procedure Attack
Template attacks

Leakage assessment

Doubling attack, Collision attacks

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 5/14

Why?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?

Fp with p # {2,3}. The algorithm used for the hardware modular multiplica-
tion is assumed to be known to the attacker. Moreover, to simplify the attack

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?

is assumed to be known

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?

is assumed to be known

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Assumptions

input to s (“fix class”). (This assumes a white-box evaluator
that has access to implementation internals.)

is assumed to be known

2 Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Asumptions

assumes a white-box evaluator

is assumed to be known

2 Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Assumptions

assumes a white-box evaluator

e 6.1 abstractly depicts a side-channel measurement of such an ex-
tion. For the sake of simplicity, I assume it is a binary exponen-

is assumed to be known

3 Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of Asymmetric Cryptography

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Asumptions

assumes a white-box evaluator

assume it is a binary exp

is assumed to be known

3 Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of Asymmetric Cryptography

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Assumptions

assumes a white-box evaluator

assume it is a binary exp

is assumed to be known

values may be manipulated when working with points P and 2P. However this
idea only works when using the downward routine.

“ Pierre-Alain Fouque & Frederic Valette: The Doubling Attack - Why Upwards |s Better than Downwards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Asumptions

assumes a white-box evaluator

assume it is a binary exp

is assumed to be known

only works when using the downward routine.

4 Pierre-Alain Fouque & Frederic Valette: The Doubling Attack - Why Upwards |s Better than Downwards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Asumptions

assumes a white-box evaluator

assume it is a binary exp

is assumed to be known

only works when using the downward routine.

4 Pierre-Alain Fouque & Frederic Valette: The Doubling Attack - Why Upwards |s Better than Downwards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Assumptions

assumes a white-box evaluator

assume it is a binary exp _ R R
a doubling operation from an addition one. This technique, which allows to eventually
recover the secret scalar, is applied to three different atomic formulae on elliptic curves,

is assumed to be known

only works when using the downward routine.

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Assumptions

assumes a white-box evaluator

assume it is a binary exp

is applied to three different atomic formulae on elliptic curves,

is assumed to be known

only works when using the downward routine.

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Assumptions

attack on the Montgomery-Lépez-Dahab ladder algorithm assumes a white-box evaluator

assume it is a binary exp

is applied to three different atomic formulae on elliptic curves,

is assumed to be known

only works when using the downward routine.

5 Bo-Yeon Sim & Dong-Guk Han: Key Bit-Dependent Attack on Protected PKC Using a Single Trace

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

6/14

Why?
Assumptions

attack on the Montgomery-Lépez-Dahab ladder algorithm assumes a white-box evaluator

assume it is a binary exp

is applied to three different atomic formulae on elliptic curves,

is assumed to be known
full knowledge of all algorithms,

only works when using the downward routine.

6 Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A synthesis of side-channel attacks on elliptic curve
cryptography in smart-cards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

6/14

Why?
Assumptions

attack on the Montgomery-Lépez-Dahab ladder algorithm assumes a white-box evaluator

assume it is a binary exp

is applied to three different atomic formulae on elliptic curves,
knowledge of the ECSM and the elliptic

is assumed to be known
full knowledge of all algorithms,

only works when using the downward routine.

6 Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A synthesis of side-channel attacks on elliptic curve
cryptography in smart-cards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

6/14

Why?
Assumptions

attack on the Montgomery-Lépez-Dahab ladder algorithm assumes a white-box evaluator

assume it is a binary exp

is applied to three different atomic formulae on elliptic curves,
knowledge of the ECSM and the elliptic

is assumed to be known

full knowledge of all algorithms,

only works when using the downward routine.

Lots of assumptions you’ve got there!

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6/14

Why?
Reality

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 7/14

Why?
Reality

ﬁ
010011011

td
o

Aw:
O

\
3
\

S s
MY d

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 7/14

Why?

Reality

Real-world cryptographic hardware is usually a black-box
TPMs, HSMs, smartcards, ...

Why?
Security by obscurity
Certifications encourage information hiding (CC, JIL-SCA)

Contrast to cryptographic theory space

Kerckhoffs’s principle
Open design, open discussion

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

7/14

Why?

Reality

Real-world cryptographic hardware is usually a black-box
TPMs, HSMs, smartcards, ...

Why?
Security by obscurity
Certifications encourage information hiding (CC, JIL-SCA)

Contrast to cryptographic theory space

Kerckhoffs’s principle
Open design, open discussion

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

7/14

Why?
Gap

Attacks Targets

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 8/14

RO1:
What implementation choices are used in real-world open-source ECC libraries?

RO2:
How large is the space of all possible ECC implementations?

RO3:
Is it possible to automatically reverse-engineer black-box ECC implementations?

RO1

What implementation choices are used in real-world open-source ECC libraries?

Analyzed 18 open-source ECC libraries (&)

BearSSL, BoringSSL, Botan, Bouncy(Castle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9/14

https://pyecsca.org/libraries.html

RO1

What implementation choices are used in real-world open-source ECC libraries?

Analyzed 18 open-source ECC libraries (&)

BearSSL, BoringSSL, Botan, Bouncy(Castle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

Source-code analysis of ECDH, ECDSA, X25519, and EA25519

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9/14

https://pyecsca.org/libraries.html

RO1

What implementation choices are used in real-world open-source ECC libraries?

Analyzed 18 open-source ECC libraries (&)

BearSSL, BoringSSL, Botan, Bouncy(Castle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

Source-code analysis of ECDH, ECDSA, X25519, and EA25519
Curve model, Scalar multiplier, Coordinate system, Addition formulas

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9/14

https://pyecsca.org/libraries.html

RO1

What implementation choices are used in real-world open-source ECC libraries?

Analyzed 18 open-source ECC libraries (&)

BearSSL, BoringSSL, Botan, Bouncy(Castle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

Source-code analysis of ECDH, ECDSA, X25519, and EdA25519
Curve model, Scalar multiplier, Coordinate system, Addition formulas
Full report: https://pyecsca.org/libraries.html

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9/14

https://pyecsca.org/libraries.html

RO1

What implementation choices are used in real-world open-source ECC libraries?

Specific implementations

Curve or architecture-based (10 &)
e.g. a = —3 or special prime
arithmetic

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10/14

RO1

What implementation choices are used in real-world open-source ECC libraries?

Curve models

Usually outside = inside
Montgomery outside,
Twisted-Edwards inside (4 &)

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10/14

RO1

What implementation choices are used in real-world open-source ECC libraries?

Scalar multipliers

fixed-base + variable-base +
multi-scalar

Comb, fixed-window, wNAF, GLV, ...
4 to 7 bit widths

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

10/14

RO1

What implementation choices are used in real-world open-source ECC libraries?

Coordinate systems

Usually Jacobian, also homogenous
or Xz

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10/14

RO1

What implementation choices are used in real-world open-source ECC libraries?

Addition formulas

112 formula implementations

50 “standard” (EFD)

23 out-of-scope

39 “non-standard”

Expanded standard formulas from
~200 to ~20000

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10/14

RO1

What implementation choices are used in real-world open-source ECC libraries?

Wide range of implementation choices in real-world implementations.

l

Expect also in black-box implementations.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10/14

RO2

How large is the space of all possible ECC implementations?

We can enumerate:
Curve model
Coordinate system
Addition formulas
Scalar multiplier
Misc. options

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 11/14

RO2

How large is the space of all possible ECC implementations?

We can enumerate:
Curve model
Coordinate system
Addition formulas
Scalar multiplier
Misc. options

Total: 139 489

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

Curve Coords # Total
jacobian 17136
jacobian-0 22848
jacobian-3 28560
modified 2856
projective 9520

Esw projective-1 10710 113502
projective-3 16 660
w12-0 476
Xyzz 1428
xyzz-3 2856
Xz 452

Em Xz 132 132
inverted 2856

& SQO]GCIIVG 11 4;;1 14431
yzsquared 52
extended 2856
extended-1 5712

ST inverted 1428 1142
projective 1428

11/14

RO2

How large is the space of all possible ECC implementations?

We can enumerate:
Curve model
Coordinate system
Addition formulas
Scalar multiplier
Misc. options

Total: 139 489

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

Scalar multiplier #
LTR 9328
RTL 9328
Coron 1166
Ladder 407
SimpleLadder 2332
DiffLadder 328
BinaryNAF 4664
WindowNAF 18656
WindowBooth 18656
Window 9328
SlidingWindow 18656
FullPrecomp 18656
Comb 9328
BGMW 18656

11/14

RO2

How large is the space of all possible ECC implementations?

Considerable number of implementation configurations: 139 489.
|

Worth reverse engineering.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 11/14

RO3

Is it possible to automatically reverse-engineer black-box ECC implementations?

Idea: Use side-channel attacks and turn them around
Assume-knowledge-of the-impt—and-target-thekey
Assume knowledge of the key and target the impl.

Concretely “special-point-based” attacks: RPA, ZVP, EPA

Can recognize when a special point appears in scalar multiplication

Idea: Behavior of different implementations differs under these attacks

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12/14

RO3

Is it possible to automatically reverse-engineer black-box ECC implementations?

Simulate behavior of implementations under the oracle (attack)
RPA: Is [r]P computed during [k]P computation by the target?

Build a decision table with the answers

Build a decision tree, recursively picking the best split

Teeal [27'1P0 [371Po [471P0 [57'1Po
LTR | True True False False 3
True False
RTL | True False True True 4 / \ c
Comb | True False True False | Trye, \False True, “False
Ladder | True True True False | Ladder LTR RTL Comb

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

12/14

RO3

Is it possible to automatically reverse-engineer black-box ECC implementations?

Simulate behavior of implementations under the oracle (attack)
RPA: Is [r]P computed during [k]P computation by the target?

Build a decision table with the answers
Build a decision tree, recursively picking the best split

Method\ Curve Coordinates Formulas Multiplier Scalar Input point

RPA-RE | chosen any any target known chosen
ZVP-RE | chosen target target known known chosen
EPA-RE | chosen target target known known chosen

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12/14

RO3

Is it possible to automatically reverse-engineer black-box ECC implementations?

Implemented in the pyecsca toolkit

It works!
Expected Random
Method | Oracle c +@ |@ @1 & I
RPA-RE | binary 34 34 10 50 1.0 5.0
ZVP-RE | binary 214 74 8.7 51 50 4.0
ZVP-RE | count 214 134 24 40 13 2.5
ZVP-RE | position 214 196 1.2 21 11 1.8

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis

12/14

RO3

Is it possible to automatically reverse-engineer black-box ECC implementations?

Yes, it is possible.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12/14

...and much more
@ pyecsca

pyecsca.org

Python Elliptic Curve Side Channel Analysis toolkit
Can enumerate configurations
Can simulate computation given any configuration
Can generate C implementations of ECC for micro-processors
Can perform power and EM-tracing
Can process collected traces and visualize them
Can perform known attacks against ECC
Can be used to reverse engineer ECC

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 13/14

https://pyecsca.org/?utm_source=ches2024

Conclusions

Documented large variety of implementation choices in 18 open-source ECC
libraries

Expect similar variety in black-box devices
Explored the space of possible implementation choices of ECC
Considerable number of choices, necessary knowledge for an attack
Presented several novel attack-based reverse-engineering methods for ECC
Demonstrated effectivenes on two simulation levels

Explore our tutorial:
github.com/J08nY/pyecsca-tutorial-ches2024

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 14 /14

https://github.com/J08nY/pyecsca-tutorial-ches2024

€CSsCa
@ p)/;mj

Reverse engineering black-box elliptic curve
cryptography via side-channel analysis

Jan Jancar, Vojtech Suchanek, Petr Svenda, Vladimir Sedlacek, tukasz Chmielewski

¥ J08nY

Questions? jan@neuromancer.sk

https://pyecsca.org/
https://twitter.com/J08nY
https://pyecsca.org/papers.html

References

Jan Jancar, Vojtech Suchanek, Petr Svenda, Vladimir Sedlacek & tukasz Chmielewski;
pyecsca: Reverse-engineering black-box elliptic curve cryptography via side-channel analysis

https://pyecsca.org/papers.html?utm_source=tutorial-ches2024#pyecsca-reverse-engineering-black-box-elliptic-curve-cryptography-via-side-channel-analysis

References (cont.)

Attack assumptions
Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal
Collision Correlation Attack on Elliptic Curves
Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of
Asymmetric Cryptography

Pierre-Alain Fouque & Frederic Valette: The Doubling Attack - Why Upwards Is Better than
Downwards

Bo-Yeon Sim & Dong-Guk Han: Key Bit-Dependent Attack on Protected PKC Using a Single Trace
Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A
synthesis of side-channel attacks on elliptic curve cryptography in smart-cards

Other
https://hyperelliptic.org/EFD/
Icons from @ X @ Noun Project & Font Awesome

https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://ieeexplore.ieee.org/document/7927267
https://mediatum.ub.tum.de/?id=1129375
https://mediatum.ub.tum.de/?id=1129375
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_22
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_22
https://link.springer.com/chapter/10.1007/978-3-319-72359-4_10
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://hyperelliptic.org/EFD/
https://thenounproject.com
https://fontawesome.com

References (cont.)

ECC attack and countermeasure surveys

Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel & Ingrid Verbauwhede;
State-of-the-art of secure ECC implementations: A survey on known side-channel attacks and
countermeasures

Junfeng Fan & Ingrid Verbauwhede; An updated survey on secure ECC implementations: Attacks,
countermeasures and cost

Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache; A
synthesis of side-channel attacks on elliptic curve cryptography in smart-cards

Rodrigo Abarzua, Claudio Valencia Cordero & Julio Cesar Lépez-Hernandez; Survey on
performance and security problems of countermeasures for passive side-channel attacks on ECC

https://ieeexplore.ieee.org/document/5513110
https://ieeexplore.ieee.org/document/5513110
https://link.springer.com/chapter/10.1007/978-3-642-28368-0_18
https://link.springer.com/chapter/10.1007/978-3-642-28368-0_18
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-021-00257-8
https://link.springer.com/article/10.1007/s13389-021-00257-8

References (cont.)

Special-point-based attacks
Louis Goubin; A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems
Toru Akishita, Tsuyoshi Takagi; Zero-value point attacks on elliptic curve cryptosystem
Tetsuya Izu, Tsuyoshi Takagi; Exceptional procedure attack on elliptic curve cryptosystems

Vladimir Sedlacek, Jesus-Javier Chi-Dominguez, Jan Jancar, Billy Bob Brumley;
A formula for disaster: a unified approach to elliptic curve special-point-based attacks

http://www.goubin.fr/papers/ecc-dpa.pdf
https://link.springer.com/chapter/10.1007/10958513_17
https://link.springer.com/chapter/10.1007/3-540-36288-6_17
https://crocs.fi.muni.cz/public/papers/formulas_asiacrypt21

References (cont.)

Side-channel-based disassembly

Jean-Jacques Quisquater & David Samyde;

Automatic code recognition for smart cards using a Kohonen neural network
Dennis Vermoen, Marc F. Witteman & Georgi Gaydadjiev;

Reverse engineering Java Card applets using power analysis

Thomas Eisenbarth, Christof Paar & Bjorn Weghenkel;

Building a side channel based disassembler

...and much more (see the paper)

https://dl.acm.org/doi/10.5555/1250988.1250994
https://link.springer.com/chapter/10.1007/978-3-540-72354-7_12
https://link.springer.com/chapter/10.1007/978-3-642-17499-5_4

References (cont.)

Side-channel-based reverse engineering

Christophe Clavier;

Side channel analysis for reverse engineering (SCARE) - an improved attack against a secret
A3/A8 GSM algorithm

Rémy Daudigny, Hervé Ledig, Frédéric Muller & Frédéric Valette;

SCARE of the DES

Manuel San Pedro, Mate Soos & Sylvain Guilley;

FIRE: Fault injection for reverse engineering

Frederic Amiel, Benoit Feix & Karine Villegas;

Power analysis for secret recovering and reverse engineering of public key algorithms

...and some more (see the paper)

https://eprint.iacr.org/2004/049
https://eprint.iacr.org/2004/049
https://link.springer.com/chapter/10.1007/11496137_27
https://link.springer.com/chapter/10.1007/978-3-642-21040-2_20
https://link.springer.com/chapter/10.1007/978-3-540-77360-3_8

References (cont.)

Manual reverse engineering
Thomas Roche, Victor Lomné, Camille Mutschler & Laurent Imbert;
A Side Journey to Titan

Thomas Roche;
EUCLEAK: Side-Channel Attack on the YubiKey 5 Series

https://ninjalab.io/a-side-journey-to-titan/
https://ninjalab.io/eucleak/

	Title
	Outline
	Why?
	Elliptic Curve Cryptography
	Side-channel attacks
	Assumptions
	Reality
	Gap

	pyecsca
	RQ1
	RQ2
	RQ3
	Toolkit

	Conclusions
	Appendix
	Thanks
	References

