
Reverse engineering black-box elliptic curve
cryptography via side-channel analysis

Jan Jancar1, Vojtech Suchanek1, Petr Svenda1, Vladimir Sedlacek2, Łukasz Chmielewski1

CHES 2024
pyecsca.org

1

2

https://neuromancer.sk/pyecsca/
https://pyecsca.org/papers.html
https://pyecsca.org/
https://crocs.fi.muni.cz/
https://rutgers.edu/

Outline

□ Why?
○ Elliptic Curve Cryptography
○ Side-Channel Attacks

□ RQ1: Real-world ECC implementations
□ RQ2: Space of possible ECC implementations
□ RQ3: Reverse-engineering ECC implementations
□ Conclusions

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 2 / 14

Why?
Elliptic Curve Cryptography

P

Q

−(P + Q)

(P + Q)

x

yR

Short Weierstrass

□ Elliptic Curve: y2 ≡ x3 + ax + b
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

P
Q −(P + Q)

(P + Q)

x

yR

Montgomery

□ Elliptic Curve: by2 ≡ x3 + ax2 + x
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

P

Q

(P + Q)

x

yR

Edwards

□ Elliptic Curve: x2 + y2 ≡ c2(1 + dx2y2)
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

PQ

(P + Q)
x

yR

Twisted Edwards

□ Elliptic Curve: ax2 + y2 ≡ 1 + dx2y2

○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

□ Elliptic Curve:
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp
□ ECDH: Diffie-Hellman on E(Fp)

○ Scalar multiplication + hash -> Shared secret

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

□ Elliptic Curve:
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp
□ ECDH: Diffie-Hellman on E(Fp)

○ Scalar multiplication + hash -> Shared secret
□ ECDSA: Digital Signature Algorithm on E(Fp)

○ Random sample + scalar multiplication + hash + mod. arithmetic -> Signature

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

□ Elliptic Curve:
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp
□ ECDH: Diffie-Hellman on E(Fp)

○ Scalar multiplication + hash -> Shared secret
□ ECDSA: Digital Signature Algorithm on E(Fp)

○ Random sample + scalar multiplication + hash + mod. arithmetic -> Signature

□ XDH, EdDSA, . . .
pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 3 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities

○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model

� y2 ≡ x3 + ax + b

○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model

� y2 ≡ x3 + ax + b
� x2 + y2 ≡ c2(1 + dx2y2)

○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model

� y2 ≡ x3 + ax + b
� x2 + y2 ≡ c2(1 + dx2y2)
� ax2 + y2 ≡ 1 + dx2y2

○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model

� y2 ≡ x3 + ax + b
� x2 + y2 ≡ c2(1 + dx2y2)
� ax2 + y2 ≡ 1 + dx2y2

� by2 ≡ x3 + ax2 + x

○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates

○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates

� (X, Y)

○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates

� (X, Y)
� (X, Y , Z)

○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates

� (X, Y)
� (X, Y , Z)
� (X, Y , Z, ZZ) . . .

○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas

○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

Y1Z2 = Y1*Z2
X1Z2 = X1*Z2
Z1Z2 = Z1*Z2
u = Y2*Z1-Y1Z2
uu = u2
v = X2*Z1-X1Z2
vv = v2
vvv = v*vv
R = vv*X1Z2
A = uu*Z1Z2-vvv-2*R
X3 = v*A
Y3 = u*(R-A)-vvv*Y1Z2
Z3 = vvv*Z1Z2

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas

○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

Y1Z2 = Y1*Z2
X1Z2 = X1*Z2
Z1Z2 = Z1*Z2
u = Y2*Z1-Y1Z2
uu = u2
v = X2*Z1-X1Z2
vv = v2
vvv = v*vv
R = vv*X1Z2
A = uu*Z1Z2-vvv-2*R
X3 = v*A
Y3 = u*(R-A)-vvv*Y1Z2
Z3 = vvv*Z1Z2

U1 = X1*Z2
U2 = X2*Z1
S1 = Y1*Z2
S2 = Y2*Z1
ZZ = Z1*Z2
T = U1+U2
M = S1+S2
R = T2-U1*U2+a*ZZ2
F = ZZ*M
L = M*F
G = T*L
W = R2-G
X3 = 2*F*W
Y3 = R*(G-2*W)-L2

Z3 = 2*F*F2

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas

○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

Y1Z2 = Y1*Z2
X1Z2 = X1*Z2
Z1Z2 = Z1*Z2
u = Y2*Z1-Y1Z2
uu = u2
v = X2*Z1-X1Z2
vv = v2
vvv = v*vv
R = vv*X1Z2
A = uu*Z1Z2-vvv-2*R
X3 = v*A
Y3 = u*(R-A)-vvv*Y1Z2
Z3 = vvv*Z1Z2

U1 = X1*Z2
U2 = X2*Z1
S1 = Y1*Z2
S2 = Y2*Z1
ZZ = Z1*Z2
T = U1+U2
M = S1+S2
R = T2-U1*U2+a*ZZ2
F = ZZ*M
L = M*F
G = T*L
W = R2-G
X3 = 2*F*W
Y3 = R*(G-2*W)-L2

Z3 = 2*F*F2

u = Y2*Z1-Y1*Z2
v = X2*Z1-X1*Z2
A = u2*Z1*Z2-v3-2*v2*X1*Z2
X3 = v*A
Y3 = u*(v2*X1*Z2-A)-v3*Y1*Z2
Z3 = v3*Z1*Z2

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas

○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier

� fixed-base, variale-base, multi-scalar

○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier

� fixed-base, variale-base, multi-scalar

○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

Algorithm Left-to-right double-and-add
function LTR(G, k = (kl, . . . , k0)2)
R = O
for i = l downto 0 do
R = dbl(R)
if ki = 1 then
R = add(R,G)

return R

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier

� fixed-base, variale-base, multi-scalar

○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

Algorithm Fixed-window scalar multiplier
function Window(G, k = (kl, . . . , k0)2)
PrecomuptedTable = [0 ∗ G, 1 ∗ G, . . . , 2w − 1 ∗ G]
k̂ = recode k to w-bit windows
T = O
for i = 1 to |k̂| do
T = 2wT
T = T + PrecomputedTable[k̂i]

return T
pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .

� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .

� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .

� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 4 / 14

Why?
Side-Channel Attacks

□ Simple Power Analysis
□ Differential Power Analysis
□ Correlation Power Analysis
□ Mutual Information Analysis
□ Refined Power Analysis, Zero-value Point Attack, Exceptional Procedure Attack
□ Template attacks
□ Leakage assessment
□ Doubling attack, Collision attacks
□ . . .

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 5 / 14

Why?
Side-Channel Attacks

□ Simple Power Analysis
□ Differential Power Analysis
□ Correlation Power Analysis
□ Mutual Information Analysis
□ Refined Power Analysis, Zero-value Point Attack, Exceptional Procedure Attack
□ Template attacks
□ Leakage assessment
□ Doubling attack, Collision attacks
□ . . .

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 5 / 14

Why?
Assumptions

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

2 Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

2 Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

3 Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of Asymmetric Cryptography

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

3 Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of Asymmetric Cryptography

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

4 Pierre-Alain Fouque & Frederic Valette: The Doubling Attack – Why Upwards Is Better than Downwards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

4 Pierre-Alain Fouque & Frederic Valette: The Doubling Attack – Why Upwards Is Better than Downwards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

4 Pierre-Alain Fouque & Frederic Valette: The Doubling Attack – Why Upwards Is Better than Downwards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

1 Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal Collision Correlation Attack on Elliptic Curves

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

5 Bo-Yeon Sim & Dong-Guk Han: Key Bit-Dependent Attack on Protected PKC Using a Single Trace

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

6 Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A synthesis of side-channel attacks on elliptic curve
cryptography in smart-cards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

6 Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A synthesis of side-channel attacks on elliptic curve
cryptography in smart-cards

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Assumptions

Lots of assumptions you’ve got there!

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14

Why?
Reality

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 7 / 14

Why?
Reality

010011011

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 7 / 14

Why?
Reality

□ Real-world cryptographic hardware is usually a black-box
○ TPMs, HSMs, smartcards, . . .

□ Why?
○ Security by obscurity
○ Certifications encourage information hiding (CC, JIL-SCA)

□ Contrast to cryptographic theory space
○ Kerckhoffs’s principle
○ Open design, open discussion

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 7 / 14

Why?
Reality

Auguste Kerckhoffs

□ Real-world cryptographic hardware is usually a black-box
○ TPMs, HSMs, smartcards, . . .

□ Why?
○ Security by obscurity
○ Certifications encourage information hiding (CC, JIL-SCA)

□ Contrast to cryptographic theory space
○ Kerckhoffs’s principle
○ Open design, open discussion

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 7 / 14

Why?
Gap

Attacks

???

Targets

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 8 / 14

RQ1:
What implementation choices are used in real-world open-source ECC libraries?

RQ2:
How large is the space of all possible ECC implementations?

RQ3:
Is it possible to automatically reverse-engineer black-box ECC implementations?

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Analyzed 18 open-source ECC libraries ([)
□ BearSSL, BoringSSL, Botan, BouncyCastle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

□ Source-code analysis of ECDH, ECDSA, X25519, and Ed25519
□ Curve model, Scalar multiplier, Coordinate system, Addition formulas
□ Full report: https://pyecsca.org/libraries.html

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9 / 14

https://pyecsca.org/libraries.html

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Analyzed 18 open-source ECC libraries ([)
□ BearSSL, BoringSSL, Botan, BouncyCastle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

□ Source-code analysis of ECDH, ECDSA, X25519, and Ed25519

□ Curve model, Scalar multiplier, Coordinate system, Addition formulas
□ Full report: https://pyecsca.org/libraries.html

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9 / 14

https://pyecsca.org/libraries.html

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Analyzed 18 open-source ECC libraries ([)
□ BearSSL, BoringSSL, Botan, BouncyCastle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

□ Source-code analysis of ECDH, ECDSA, X25519, and Ed25519
□ Curve model, Scalar multiplier, Coordinate system, Addition formulas

□ Full report: https://pyecsca.org/libraries.html

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9 / 14

https://pyecsca.org/libraries.html

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Analyzed 18 open-source ECC libraries ([)
□ BearSSL, BoringSSL, Botan, BouncyCastle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

□ Source-code analysis of ECDH, ECDSA, X25519, and Ed25519
□ Curve model, Scalar multiplier, Coordinate system, Addition formulas
□ Full report: https://pyecsca.org/libraries.html

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 9 / 14

https://pyecsca.org/libraries.html

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [)
○ e.g. a = −3 or special prime

arithmetic

□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [)

□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems

○ Usually Jacobian, also homogenous
or xz

□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10 / 14

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [)
○ e.g. a = −3 or special prime

arithmetic
□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [)

□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems

○ Usually Jacobian, also homogenous
or xz

□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10 / 14

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [)
○ e.g. a = −3 or special prime

arithmetic
□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [)
□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems

○ Usually Jacobian, also homogenous
or xz

□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10 / 14

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [)
○ e.g. a = −3 or special prime

arithmetic
□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [)
□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems
○ Usually Jacobian, also homogenous

or xz

□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10 / 14

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [)
○ e.g. a = −3 or special prime

arithmetic
□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [)
□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems
○ Usually Jacobian, also homogenous

or xz
□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10 / 14

RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [)
○ e.g. a = −3 or special prime

arithmetic
□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [)
□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems
○ Usually Jacobian, also homogenous

or xz
□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

Wide range of implementation choices in real-world implementations.

Expect also in black-box implementations.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 10 / 14

RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 11 / 14

RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 11 / 14

Curve Coords # Total

ESW

jacobian 17 136

113 502

jacobian-0 22 848
jacobian-3 28 560
modified 2 856
projective 9 520
projective-1 10 710
projective-3 16 660
w12-0 476
xyzz 1 428
xyzz-3 2 856
xz 452

EM xz 132 132

EE

inverted 2 856

14 431projective 11 424
yz 99
yzsquared 52

ETE

extended 2 856

11 424extended-1 5 712
inverted 1 428
projective 1 428

RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 11 / 14

Scalar multiplier #

LTR 9 328
RTL 9 328
Coron 1 166
Ladder 407
SimpleLadder 2 332
DiffLadder 328
BinaryNAF 4 664
WindowNAF 18 656
WindowBooth 18 656
Window 9328
SlidingWindow 18 656
FullPrecomp 18 656
Comb 9328
BGMW 18656

RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489

Considerable number of implementation configurations: 139 489.

Worth reverse engineering.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 11 / 14

RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Idea: Use side-channel attacks and turn them around
○ Assume knowledge of the impl. and target the key
○ Assume knowledge of the key and target the impl.

□ Concretely “special-point-based” attacks: RPA, ZVP, EPA
□ Can recognize when a special point appears in scalar multiplication
□ Idea: Behavior of different implementations differs under these attacks

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12 / 14

RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Simulate behavior of implementations under the oracle (attack)
○ RPA: Is [r]P computed during [k]P computation by the target?

□ Build a decision table with the answers
□ Build a decision tree, recursively picking the best split

IRPA: [2−1]P0 [3−1]P0 [4−1]P0 [5−1]P0
LTR True True False False
RTL True False True True

Comb True False True False
Ladder True True True False

.
Ladder LTR RTL Comb

4 5

3True False

True False True False

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12 / 14

RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Simulate behavior of implementations under the oracle (attack)
○ RPA: Is [r]P computed during [k]P computation by the target?

□ Build a decision table with the answers
□ Build a decision tree, recursively picking the best split

Method Curve Coordinates Formulas Multiplier Scalar Input point

RPA-RE chosen any any target known chosen
ZVP-RE chosen target target known known chosen
EPA-RE chosen target target known known chosen

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12 / 14

RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Implemented in the pyecsca toolkit
□ It works!

Expected Random
Method Oracle |C| #
 |
 |
' |
 |
'

RPA-RE binary 34 34 1.0 5.0 1.0 5.0
ZVP-RE binary 214 74 8.7 5.1 5.0 4.0
ZVP-RE count 214 134 2.4 4.0 1.3 2.5
ZVP-RE position 214 196 1.2 2.1 1.1 1.8

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12 / 14

RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Implemented in the pyecsca toolkit
□ It works!

Expected Random
Method Oracle |C| #
 |
 |
' |
 |
'

RPA-RE binary 34 34 1.0 5.0 1.0 5.0
ZVP-RE binary 214 74 8.7 5.1 5.0 4.0
ZVP-RE count 214 134 2.4 4.0 1.3 2.5
ZVP-RE position 214 196 1.2 2.1 1.1 1.8

Yes, it is possible.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12 / 14

. . . and much more

pyecsca.org

Python Elliptic Curve Side Channel Analysis toolkit
□ Can enumerate configurations
□ Can simulate computation given any configuration
□ Can generate C implementations of ECC for micro-processors
□ Can perform power and EM-tracing
□ Can process collected traces and visualize them
□ Can perform known attacks against ECC
□ Can be used to reverse engineer ECC

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 13 / 14

https://pyecsca.org/?utm_source=ches2024

Conclusions

□ Documented large variety of implementation choices in 18 open-source ECC
libraries
○ Expect similar variety in black-box devices

□ Explored the space of possible implementation choices of ECC
○ Considerable number of choices, necessary knowledge for an attack

□ Presented several novel attack-based reverse-engineering methods for ECC
○ Demonstrated effectivenes on two simulation levels

□ Explore our tutorial:
github.com/J08nY/pyecsca-tutorial-ches2024

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 14 / 14

https://github.com/J08nY/pyecsca-tutorial-ches2024

Reverse engineering black-box elliptic curve
cryptography via side-channel analysis

Jan Jancar, Vojtech Suchanek, Petr Svenda, Vladimir Sedlacek, Łukasz Chmielewski

� J08nY
jan@neuromancer.skQuestions?

https://pyecsca.org/
https://twitter.com/J08nY
https://pyecsca.org/papers.html

References

@ Jan Jancar, Vojtech Suchanek, Petr Svenda, Vladimir Sedlacek & Łukasz Chmielewski;
pyecsca: Reverse-engineering black-box elliptic curve cryptography via side-channel analysis

https://pyecsca.org/papers.html?utm_source=tutorial-ches2024#pyecsca-reverse-engineering-black-box-elliptic-curve-cryptography-via-side-channel-analysis

References (cont.)

Attack assumptions

1 @ Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard & Justine Wild: Horizontal
Collision Correlation Attack on Elliptic Curves

2 @ Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?
3 @ Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of

Asymmetric Cryptography
4 @ Pierre-Alain Fouque & Frederic Valette: The Doubling Attack – Why Upwards Is Better than

Downwards
5 @ Bo-Yeon Sim & Dong-Guk Han: Key Bit-Dependent Attack on Protected PKC Using a Single Trace
6 @ Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A

synthesis of side-channel attacks on elliptic curve cryptography in smart-cards

Other

Ð https://hyperelliptic.org/EFD/
ë Icons from & � Font Awesome

https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://ieeexplore.ieee.org/document/7927267
https://mediatum.ub.tum.de/?id=1129375
https://mediatum.ub.tum.de/?id=1129375
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_22
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_22
https://link.springer.com/chapter/10.1007/978-3-319-72359-4_10
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://hyperelliptic.org/EFD/
https://thenounproject.com
https://fontawesome.com

References (cont.)

ECC attack and countermeasure surveys

@ Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel & Ingrid Verbauwhede;
State-of-the-art of secure ECC implementations: A survey on known side-channel attacks and
countermeasures

@ Junfeng Fan & Ingrid Verbauwhede; An updated survey on secure ECC implementations: Attacks,
countermeasures and cost

@ Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache; A
synthesis of side-channel attacks on elliptic curve cryptography in smart-cards

@ Rodrigo Abarzúa, Claudio Valencia Cordero & Julio Cesar López-Hernández; Survey on
performance and security problems of countermeasures for passive side-channel attacks on ECC

https://ieeexplore.ieee.org/document/5513110
https://ieeexplore.ieee.org/document/5513110
https://link.springer.com/chapter/10.1007/978-3-642-28368-0_18
https://link.springer.com/chapter/10.1007/978-3-642-28368-0_18
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-021-00257-8
https://link.springer.com/article/10.1007/s13389-021-00257-8

References (cont.)

Special-point-based attacks

@ Louis Goubin; A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems
@ Toru Akishita, Tsuyoshi Takagi; Zero-value point attacks on elliptic curve cryptosystem
@ Tetsuya Izu, Tsuyoshi Takagi; Exceptional procedure attack on elliptic curve cryptosystems
@ Vladimir Sedlacek, Jesús-Javier Chi-Domínguez, Jan Jancar, Billy Bob Brumley;

A formula for disaster: a unified approach to elliptic curve special-point-based attacks

http://www.goubin.fr/papers/ecc-dpa.pdf
https://link.springer.com/chapter/10.1007/10958513_17
https://link.springer.com/chapter/10.1007/3-540-36288-6_17
https://crocs.fi.muni.cz/public/papers/formulas_asiacrypt21

References (cont.)

Side-channel-based disassembly

@ Jean-Jacques Quisquater & David Samyde;
Automatic code recognition for smart cards using a Kohonen neural network

@ Dennis Vermoen, Marc F. Witteman & Georgi Gaydadjiev;
Reverse engineering Java Card applets using power analysis

@ Thomas Eisenbarth, Christof Paar & Björn Weghenkel;
Building a side channel based disassembler

@ . . . and much more (see the paper)

https://dl.acm.org/doi/10.5555/1250988.1250994
https://link.springer.com/chapter/10.1007/978-3-540-72354-7_12
https://link.springer.com/chapter/10.1007/978-3-642-17499-5_4

References (cont.)

Side-channel-based reverse engineering

@ Christophe Clavier;
Side channel analysis for reverse engineering (SCARE) – an improved attack against a secret
A3/A8 GSM algorithm

@ Rémy Daudigny, Hervé Ledig, Frédéric Muller & Frédéric Valette;
SCARE of the DES

@ Manuel San Pedro, Mate Soos & Sylvain Guilley;
FIRE: Fault injection for reverse engineering

@ Frederic Amiel, Benoit Feix & Karine Villegas;
Power analysis for secret recovering and reverse engineering of public key algorithms

@ . . . and some more (see the paper)

https://eprint.iacr.org/2004/049
https://eprint.iacr.org/2004/049
https://link.springer.com/chapter/10.1007/11496137_27
https://link.springer.com/chapter/10.1007/978-3-642-21040-2_20
https://link.springer.com/chapter/10.1007/978-3-540-77360-3_8

References (cont.)

Manual reverse engineering

@ Thomas Roche, Victor Lomné, Camille Mutschler & Laurent Imbert;
A Side Journey to Titan

@ Thomas Roche;
EUCLEAK: Side-Channel Attack on the YubiKey 5 Series

https://ninjalab.io/a-side-journey-to-titan/
https://ninjalab.io/eucleak/

	Title
	Outline
	Why?
	Elliptic Curve Cryptography
	Side-channel attacks
	Assumptions
	Reality
	Gap

	pyecsca
	RQ1
	RQ2
	RQ3
	Toolkit

	Conclusions
	Appendix
	Thanks
	References

