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Why?
Elliptic Curve Cryptography
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Short Weierstrass

□ Elliptic Curve: y2 ≡ x3 + ax + b
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp
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□ Elliptic Curve: by2 ≡ x3 + ax2 + x
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication
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□ Elliptic Curve: x2 + y2 ≡ c2(1 + dx2y2)
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Twisted Edwards

□ Elliptic Curve: ax2 + y2 ≡ 1 + dx2y2

○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp
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Why?
Elliptic Curve Cryptography

□ Elliptic Curve:
○ Points (x, y) ∈ E(K) form an abelian group
○ Scalar multiplication

[n] : E(K) → E(K)
P 7→ [n]P = P + P + . . . + P︸ ︷︷ ︸

n times
○ ECDLP: Find x given [x]G and G ∈ E(Fp)

Generally hard when K = Fp
□ ECDH: Diffie-Hellman on E(Fp)

○ Scalar multiplication + hash -> Shared secret
□ ECDSA: Digital Signature Algorithm on E(Fp)

○ Random sample + scalar multiplication + hash + mod. arithmetic -> Signature

□ XDH, EdDSA, . . .
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Why?
Elliptic Curve Cryptography

□ Many implementation possibilities

○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
○ Finite field operations

� Multiplication: Toom-Cook, Karatsuba, . . .
� Squaring: Toom-Cook, Karatsuba, . . .
� Reduction: Barret, Montgomery, . . .
� Inversion: GCD, Euler
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X1Z2 = X1*Z2
Z1Z2 = Z1*Z2
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uu = u2
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Algorithm Left-to-right double-and-add
function LTR(G, k = (kl, . . . , k0)2)
R = O
for i = l downto 0 do
R = dbl(R)
if ki = 1 then
R = add(R,G)

return R
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Why?
Elliptic Curve Cryptography

□ Many implementation possibilities
○ Curve model
○ Coordinates
○ Addition formulas
○ Scalar multiplier
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Algorithm Fixed-window scalar multiplier
function Window(G, k = (kl, . . . , k0)2)
PrecomuptedTable = [0 ∗ G, 1 ∗ G, . . . , 2w − 1 ∗ G]
k̂ = recode k to w-bit windows
T = O
for i = 1 to |k̂| do
T = 2wT
T = T + PrecomputedTable[k̂i]

return T
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Why?
Side-Channel Attacks

□ Simple Power Analysis
□ Differential Power Analysis
□ Correlation Power Analysis
□ Mutual Information Analysis
□ Refined Power Analysis, Zero-value Point Attack, Exceptional Procedure Attack
□ Template attacks
□ Leakage assessment
□ Doubling attack, Collision attacks
□ . . .
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Why?
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2 Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14



Why?
Assumptions

2 Oscar Reparaz, Josep Balasch & Ingrid Verbauwhed: Dude, is my code constant time?

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 6 / 14



Why?
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3 Johann Heyszl: Impact of Localized Electromagnetic Field Measurements on Implementations of Asymmetric Cryptography
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Assumptions

4 Pierre-Alain Fouque & Frederic Valette: The Doubling Attack – Why Upwards Is Better than Downwards
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Why?
Assumptions

5 Bo-Yeon Sim & Dong-Guk Han: Key Bit-Dependent Attack on Protected PKC Using a Single Trace
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Why?
Assumptions

6 Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica & David Naccache: A synthesis of side-channel attacks on elliptic curve
cryptography in smart-cards
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Why?
Assumptions

Lots of assumptions you’ve got there!
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Why?
Reality

□ Real-world cryptographic hardware is usually a black-box
○ TPMs, HSMs, smartcards, . . .

□ Why?
○ Security by obscurity
○ Certifications encourage information hiding (CC, JIL-SCA)

□ Contrast to cryptographic theory space
○ Kerckhoffs’s principle
○ Open design, open discussion
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Why?
Gap

Attacks

???

Targets
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RQ1:
What implementation choices are used in real-world open-source ECC libraries?

RQ2:
How large is the space of all possible ECC implementations?

RQ3:
Is it possible to automatically reverse-engineer black-box ECC implementations?



RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Analyzed 18 open-source ECC libraries ( [ )
□ BearSSL, BoringSSL, Botan, BouncyCastle, fastecdsa, Go crypto, Intel IPP
cryptography, libgcrypt, LibreSSL, libsecp256k1, libtomcrypt, mbedTLS, micro-ecc,
Nettle, NSS, OpenSSL, SunEC, and Microsoft SymCrypt

□ Source-code analysis of ECDH, ECDSA, X25519, and Ed25519
□ Curve model, Scalar multiplier, Coordinate system, Addition formulas
□ Full report: https://pyecsca.org/libraries.html
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□ Source-code analysis of ECDH, ECDSA, X25519, and Ed25519
□ Curve model, Scalar multiplier, Coordinate system, Addition formulas
□ Full report: https://pyecsca.org/libraries.html
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RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [ )
○ e.g. a = −3 or special prime

arithmetic

□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [ )

□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems

○ Usually Jacobian, also homogenous
or xz

□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000
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RQ1
What implementation choices are used in real-world open-source ECC libraries?

□ Specific implementations
○ Curve or architecture-based (10 [ )
○ e.g. a = −3 or special prime

arithmetic
□ Curve models

○ Usually outside = inside
○ Montgomery outside,

Twisted-Edwards inside (4 [ )
□ Scalar multipliers

○ fixed-base + variable-base +
multi-scalar

○ Comb, fixed-window, wNAF, GLV, . . .
○ 4 to 7 bit widths

□ Coordinate systems
○ Usually Jacobian, also homogenous

or xz
□ Addition formulas

○ 112 formula implementations
○ 50 “standard” (EFD)
○ 23 out-of-scope
○ 39 “non-standard”
$ Expanded standard formulas from

~200 to ~20000

Wide range of implementation choices in real-world implementations.

Expect also in black-box implementations.
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RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489
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Curve Coords # Total

ESW

jacobian 17 136

113 502

jacobian-0 22 848
jacobian-3 28 560
modified 2 856
projective 9 520
projective-1 10 710
projective-3 16 660
w12-0 476
xyzz 1 428
xyzz-3 2 856
xz 452

EM xz 132 132

EE

inverted 2 856

14 431projective 11 424
yz 99
yzsquared 52

ETE

extended 2 856

11 424extended-1 5 712
inverted 1 428
projective 1 428



RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489
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Scalar multiplier #

LTR 9 328
RTL 9 328
Coron 1 166
Ladder 407
SimpleLadder 2 332
DiffLadder 328
BinaryNAF 4 664
WindowNAF 18 656
WindowBooth 18 656
Window 9328
SlidingWindow 18 656
FullPrecomp 18 656
Comb 9328
BGMW 18656



RQ2
How large is the space of all possible ECC implementations?

□ We can enumerate:
○ Curve model
○ Coordinate system
○ Addition formulas
○ Scalar multiplier
○ Misc. options

□ Total: 139 489

Considerable number of implementation configurations: 139 489.

Worth reverse engineering.
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RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Idea: Use side-channel attacks and turn them around
○ Assume knowledge of the impl. and target the key
○ Assume knowledge of the key and target the impl.

□ Concretely “special-point-based” attacks: RPA, ZVP, EPA
□ Can recognize when a special point appears in scalar multiplication
□ Idea: Behavior of different implementations differs under these attacks
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RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Simulate behavior of implementations under the oracle (attack)
○ RPA: Is [r]P computed during [k]P computation by the target?

□ Build a decision table with the answers
□ Build a decision tree, recursively picking the best split

IRPA: [2−1]P0 [3−1]P0 [4−1]P0 [5−1]P0
LTR True True False False
RTL True False True True

Comb True False True False
Ladder True True True False

. . . . . .
Ladder LTR RTL Comb

4 5

3True False

True False True False
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RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Simulate behavior of implementations under the oracle (attack)
○ RPA: Is [r]P computed during [k]P computation by the target?

□ Build a decision table with the answers
□ Build a decision tree, recursively picking the best split

Method Curve Coordinates Formulas Multiplier Scalar Input point

RPA-RE chosen any any target known chosen
ZVP-RE chosen target target known known chosen
EPA-RE chosen target target known known chosen
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RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Implemented in the pyecsca toolkit
□ It works!

Expected Random
Method Oracle |C| #
 |
 | 
' |
 | 
'

RPA-RE binary 34 34 1.0 5.0 1.0 5.0
ZVP-RE binary 214 74 8.7 5.1 5.0 4.0
ZVP-RE count 214 134 2.4 4.0 1.3 2.5
ZVP-RE position 214 196 1.2 2.1 1.1 1.8
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RQ3
Is it possible to automatically reverse-engineer black-box ECC implementations?

□ Implemented in the pyecsca toolkit
□ It works!

Expected Random
Method Oracle |C| #
 |
 | 
' |
 | 
'

RPA-RE binary 34 34 1.0 5.0 1.0 5.0
ZVP-RE binary 214 74 8.7 5.1 5.0 4.0
ZVP-RE count 214 134 2.4 4.0 1.3 2.5
ZVP-RE position 214 196 1.2 2.1 1.1 1.8

Yes, it is possible.

pyecsca: Reverse engineering black-box elliptic curve cryptography via side-channel analysis 12 / 14



. . . and much more

pyecsca.org

Python Elliptic Curve Side Channel Analysis toolkit
□ Can enumerate configurations
□ Can simulate computation given any configuration
□ Can generate C implementations of ECC for micro-processors
□ Can perform power and EM-tracing
□ Can process collected traces and visualize them
□ Can perform known attacks against ECC
□ Can be used to reverse engineer ECC
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https://pyecsca.org/?utm_source=ches2024


Conclusions

□ Documented large variety of implementation choices in 18 open-source ECC
libraries
○ Expect similar variety in black-box devices

□ Explored the space of possible implementation choices of ECC
○ Considerable number of choices, necessary knowledge for an attack

□ Presented several novel attack-based reverse-engineering methods for ECC
○ Demonstrated effectivenes on two simulation levels

□ Explore our tutorial:
github.com/J08nY/pyecsca-tutorial-ches2024
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