
“They’re not that hard to mitigate”:
What Cryptographic Library Developers Think About Timing Attacks

Jan Jancar1, Marcel Fourné2, Daniel De Almeida Braga3, Mohamed Sabt3,
Peter Schwabe2, Gilles Barthe2, Pierre-Alain Fouque3 and Yasemin Acar2,4

IEEE S&P 2022
bit.ly/3riKHWB

1

2

3

4

https://bit.ly/3riKHWB
https://crocs.fi.muni.cz/
https://www.mpi-sp.org/
https://www.irisa.fr/en
https://gwusec.seas.gwu.edu/

Timing attacks

1996

□ When? 25+ years old

□ What? Duration of operation leaks information on secrets
□ Why? Branches or memory accesses on secret-derived values
□ They are still around

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 2 / 13

Timing attacks

1996

□ When? 25+ years old
□ What? Duration of operation leaks information on secrets

□ Why? Branches or memory accesses on secret-derived values
□ They are still around

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 2 / 13

Timing attacks

1996

□ When? 25+ years old
□ What? Duration of operation leaks information on secrets
□ Why? Branches or memory accesses on secret-derived values

□ They are still around

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 2 / 13

Timing attacks

1996

20202020

□ When? 25+ years old
□ What? Duration of operation leaks information on secrets
□ Why? Branches or memory accesses on secret-derived values
□ They are still around

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 2 / 13

Timing attacks
Resistance and tools for verification

□ Constant-time code practice
□ Tools to verify constant-timeness

○ https://crocs-muni.github.io/ct-tools/

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 3 / 13

Tool Target Technique

ABPV13 C Formal
Binsec/Rel Binary Symbolic
Blazer Java Formal
BPT17 C Symbolic
CacheAudit Binary Formal
CacheD Trace Symbolic
COCO-CHANNEL Java Symbolic
ctgrind Binary Dynamic
ct-fuzz LLVM Dynamic
ct-verif LLVM Formal
CT-WASM WASM Formal
DATA Binary Dynamic
dudect Binary Statistics
FaCT DSL Formal
FlowTracker LLVM Formal
haybale-pitchfork LLVM Symbolic
KMO12 Binary Formal
MemSan LLVM Dynamic
MicroWalk Binary Dynamic
SC-Eliminator LLVM Formal
SideTrail LLVM Formal
Themis Java Formal
timecop Binary Dynamic
tis-ct C Symbolic
VirtualCert x86 Formal

https://crocs-muni.github.io/ct-tools/

Why are timing attacks still around?

□ Let’s ask the crypto library developers!
□ They are the ones that would fix them

Are timing attacks part of threat models of
libraries?

How do libraries protect against timing
attacks?

Are developers aware of the tools?

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 4 / 13

Why are timing attacks still around?

□ Let’s ask the crypto library developers!
□ They are the ones that would fix them

Are timing attacks part of threat models of
libraries?

How do libraries protect against timing
attacks?

Are developers aware of the tools?

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 4 / 13

Ran a survey
Sample

Libraries

OpenSSL, LibreSSL,
Amazon s2n, libgcrypt,
RustCrypto, libsecp256k1
. . .

Developers

11 core developers,
19 maintainers,
11 committers,
. . .

□ Targeted open-source cryptographic libraries
□ Most-active contributors

○ number of commits
□ Invited 201 developers from 36 libraries

○ 44 valid responses
○ 27 libraries

□ Thanks to our participants!

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 5 / 13

Ran a survey
Content

1. Participant background

2. Library / Primitive
properties and decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysis

6. Miscellaneous

Asked about
□ Background in cryptography
□ Experience developing cryptographic code
□ Academic / Industry background

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 6 / 13

Ran a survey
Content

1. Participant background

2. Library / Primitive
properties and decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysis

6. Miscellaneous

Asked about
□ role in library
□ Library design decisions
□ Library threat model
□ Timing attack protections in library
□ Testing of timing attack resistance of library

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 6 / 13

Ran a survey
Content

1. Participant background

2. Library / Primitive
properties and decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysis

6. Miscellaneous

Asked about
□ awareness of tools
□ How learned about them

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 6 / 13

Ran a survey
Content

1. Participant background

2. Library / Primitive
properties and decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysis

6. Miscellaneous

Asked about
□ Experience with using tools

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 6 / 13

Ran a survey
Content

1. Participant background

2. Library / Primitive
properties and decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysis

6. Miscellaneous

Presented properties of three groups of tools
□ Groups of tools

○ Dynamic instrumentation
○ Statistical runtime tests
○ Formal analysis

□ Properties
○ Requirements on code
○ Guarantees on the results

□ Asked about likeliness of use and reasoning

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 6 / 13

Ran a survey
Content

1. Participant background

2. Library / Primitive
properties and decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysis

6. Miscellaneous

Asked about general thoughts on
□ Timing attacks
□ Our survey

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 6 / 13

Developers know about timing attacks. . .

□ 100% knew about timing attacks
□ Opinions varied

“It was totally obvious for everybody right
from the start that protection against timing
attacks is necessary.”

“For many cases there aren’t enough real
world attacks to justify spending time on
preventing timing leaks.”

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 7 / 13

. . . and consider them a threat. . .

□ Threat models of libraries
○ Included timing attacks: 23
○ Did not include: 2

□ Libraries differentiate between local
and remote attacks
○ Include remote: 20
○ Include local: 16

□ Reasoning varied

“We worry mostly about timing now. These
can vary, remote observation is obviously a
bigger issue, local observation cannot be
discounted either.”

“Yes. They [timing attacks] are a concern for
some users. And it is never fun to be the bug
that a new research paper is talking about
exploiting :)”

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 8 / 13

. . . and consider them a threat. . .

□ Threat models of libraries
○ Included timing attacks: 23
○ Did not include: 2

□ Libraries differentiate between local
and remote attacks
○ Include remote: 20
○ Include local: 16

□ Reasoning varied

“We worry mostly about timing now. These
can vary, remote observation is obviously a
bigger issue, local observation cannot be
discounted either.”

“Yes. They [timing attacks] are a concern for
some users. And it is never fun to be the bug
that a new research paper is talking about
exploiting :)”

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 8 / 13

. . . that is worth protecting against.

□ Claimed resistance against timing
attacks
○ Yes, fully: 13
○ Partially: 10
○ No: 3

□ Various protection techniques
○ Constant-time code practice: 21
○ Constant-time algorithm: 9
○ Blinding, slicing, assembly,

hardware features, random delays

“It’s just how you write cryptographic code,
every other way is the wrong approach
(unless in very specific circumstances or if no
constant-time algorithm is known).”

“Conditional branches and lookups are
avoided on secrets. Assembly code and
common tricks are used to prevent compiler
optimizations.”

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 9 / 13

. . . that is worth protecting against.

□ Claimed resistance against timing
attacks
○ Yes, fully: 13
○ Partially: 10
○ No: 3

□ Various protection techniques
○ Constant-time code practice: 21
○ Constant-time algorithm: 9
○ Blinding, slicing, assembly,

hardware features, random delays

“It’s just how you write cryptographic code,
every other way is the wrong approach
(unless in very specific circumstances or if no
constant-time algorithm is known).”

“Conditional branches and lookups are
avoided on secrets. Assembly code and
common tricks are used to prevent compiler
optimizations.”

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 9 / 13

Most heard about the tools. . .

“We independently came up with this approach and were using it
[before we] knew ctgrind existed.”

□ Most of the tools were unknown
□ Well-known tools:

○ ct-grind: 27
○ ct-verif: 17
○ MemSan: 8

□ 33 heard of at least one

□ Only 19 tried to use
□ Why not?

○ Lack of time: 26
○ Inability to ignore issues: 8
○ Tool not maintained: 5
○ Tool not available: 4

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 10 / 13

Most heard about the tools. but haven’t tried using them,

“We independently came up with this approach and were using it
[before we] knew ctgrind existed.”

□ Most of the tools were unknown
□ Well-known tools:

○ ct-grind: 27
○ ct-verif: 17
○ MemSan: 8

□ 33 heard of at least one

□ Only 19 tried to use
□ Why not?

○ Lack of time: 26
○ Inability to ignore issues: 8
○ Tool not maintained: 5
○ Tool not available: 4

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 10 / 13

. . . and are unlikely to use some of them.

7 6 10 8 5Statistical runtime tests

Likeliness of use

Very unlikely Somewhat unlikely Neutral Somewhat likely Very likely

4 6 5 9 12Dynamic instrumentation

8 11 12 5Formal analysis

□ Formal analysis
○ Perceived as too much effort: 22

□ Dynamic & Statistical tools
○ Acceptable trade-off between effort

and guarantees: 10

“I’m very interested in these sorts of tools,
but so far it seems formal analysis tools (at
least where we’ve tried to apply it to
correctness) are not really usable by mere
mortals yet.”

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 11 / 13

There is a leaky pipeline of developers using tools.

100%

38.6%43.2%

75%

25% Don't know about tools

31.8% Haven't tried to use tools

4.5% Don't use tools

44 Developers

17 Developers

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 12 / 13

Recommendations

Tool developers
□ Make tools usable

○ Available
○ Easy to install
○ Documentation, examples

□ Promote tools at appropriate venues

Crypto developers
□ Use the tools, automate, include in CI
□ Eliminate all timing leaks
□ Mark secrets in code

Compiler writers
□ Support secret types

○ Do not introduce timing leaks
□ Give more control to developers

○ To stop introduction of timing leaks

Standardization bodies
□ Encourage submitters to use tools
□ Require constant-time code

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 13 / 13

Recommendations

Tool developers
□ Make tools usable

○ Available
○ Easy to install
○ Documentation, examples

□ Promote tools at appropriate venues

Crypto developers
□ Use the tools, automate, include in CI
□ Eliminate all timing leaks
□ Mark secrets in code

Compiler writers
□ Support secret types

○ Do not introduce timing leaks
□ Give more control to developers

○ To stop introduction of timing leaks

Standardization bodies
□ Encourage submitters to use tools
□ Require constant-time code

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 13 / 13

Recommendations

Tool developers
□ Make tools usable

○ Available
○ Easy to install
○ Documentation, examples

□ Promote tools at appropriate venues

Crypto developers
□ Use the tools, automate, include in CI
□ Eliminate all timing leaks
□ Mark secrets in code

Compiler writers
□ Support secret types

○ Do not introduce timing leaks
□ Give more control to developers

○ To stop introduction of timing leaks

Standardization bodies
□ Encourage submitters to use tools
□ Require constant-time code

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 13 / 13

Recommendations

Tool developers
□ Make tools usable

○ Available
○ Easy to install
○ Documentation, examples

□ Promote tools at appropriate venues

Crypto developers
□ Use the tools, automate, include in CI
□ Eliminate all timing leaks
□ Mark secrets in code

Compiler writers
□ Support secret types

○ Do not introduce timing leaks
□ Give more control to developers

○ To stop introduction of timing leaks

Standardization bodies
□ Encourage submitters to use tools
□ Require constant-time code

“They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks 13 / 13

“They’re not that hard to mitigate”:
What Cryptographic Library Developers Think About Timing Attacks
Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt,
Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque and Yasemin Acar

� J08nY
bit.ly/3riKHWB

Questions?

100%

38.6%43.2%

75%

25% Don't know about tools

31.8% Haven't tried to use tools

4.5% Don't use tools

44 Developers

17 Developers

7 6 10 8 5Statistical runtime tests

Likeliness of use

Very unlikely Somewhat unlikely Neutral Somewhat likely Very likely

4 6 5 9 12Dynamic instrumentation

8 11 12 5Formal analysis

Developers
□ Know and care about timing attacks
□ Do not know most tools for verifying
constant-timeness

□ Do not use tools, mostly due to lack of time

https://twitter.com/J08nY
https://bit.ly/3riKHWB

